DOI QR코드

DOI QR Code

Brief Retrospect on the Use of Photobiomodulation (PBM) Therapy for Augmented Bone Regeneration (ABR)

  • Received : 2021.02.14
  • Accepted : 2021.02.19
  • Published : 2021.03.31

Abstract

As technology advances at a rapid rate, innovations in regenerative medicine will eventually include the use of energy-based therapeutics, such as low intensity-pulsed ultrasound stimulation (LIPUs), pulsed electromagnetic field stimulation (PMFs), and low-level laser/light therapy (LLLt) or photobiomodulation therapy (PBMt). Among these treatments, LLLt/PBMt attracted significant attention by the turn of the century, as evidenced by the numerous publications compared to LIPUs and PMFs, particularly for augmented bone regeneration (ABR). This is a testament of how the maturation of technology and scientific knowledge leads to latent compounded applications, even when the value of a technique is reliant on empirical data. This article reviews some of the notable investigations using LLLt/PBMt for bone regeneration published in the past decade, focusing on how this type of therapy has been utilized together with the existing regenerative medicine landscape.

Keywords

References

  1. Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, et al. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone 2018;106:78-89. https://doi.org/10.1016/j.bone.2015.10.019
  2. Friedenberg ZB, Brighton CT. Bioelectric potentials in bone. J Bone Joint Surg Am 1966;48:915-23. https://doi.org/10.2106/00004623-196648050-00009
  3. Grace KL, Revell WJ, Brookes M. The effects of pulsed electromagnetism on fresh fracture healing: osteochondral repair in the rat femoral groove. Orthopedics 1998;21:297-302. https://doi.org/10.3928/0147-7447-19980301-12
  4. de Haas WG, Watson J, Morrison DM. Non-invasive treatment of ununited fractures of the tibia using electrical stimulation. J Bone Joint Surg Br 1980;62-B:465-70. https://doi.org/10.1302/0301-620X.62B4.6968752
  5. Tsai MT, Chang WH, Chang K, Hou RJ, Wu TW. Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagnetics 2007;28:519-28. https://doi.org/10.1002/bem.20336
  6. Sun LY, Hsieh DK, Lin PC, Chiu HT, Chiou TW. Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromagnetics 2010;31:209-19. https://doi.org/10.1002/bem.20550
  7. Midura RJ, Ibiwoye MO, Powell KA, Sakai Y, Doehring T, Grabiner MD, et al. Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res 2005;23:1035-46. https://doi.org/10.1016/j.orthres.2005.03.015
  8. Otter MW, McLeod KJ, Rubin CT. Effects of electromagnetic fields in experimental fracture repair. Clin Orthop Relat Res 1998;(355 Suppl):S90-104.
  9. Ciombor DM, Aaron RK. Influence of electromagnetic fields on endochondral bone formation. J Cell Biochem 1993;52:37-41. https://doi.org/10.1002/jcb.240520106
  10. Wang SJ, Lewallen DG, Bolander ME, Chao EY, Ilstrup DM, Greenleaf JF. Low intensity ultrasound treatment increases strength in a rat femoral fracture model. J Orthop Res 1994;12:40-7. https://doi.org/10.1002/jor.1100120106
  11. Cook SD, Ryaby JP, McCabe J, Frey JJ, Heckman JD, Kristiansen TK. Acceleration of tibia and distal radius fracture healing in patients who smoke. Clin Orthop Relat Res 1997;(337):198-207.
  12. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 1994;76:26-34. https://doi.org/10.2106/00004623-199401000-00004
  13. Hadjiargyrou M, Lombardo F, Zhao S, Ahrens W, Joo J, Ahn H, et al. Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 2002;277:30177-82. https://doi.org/10.1074/jbc.M203171200
  14. Reher P, Harris M, Whiteman M, Hai HK, Meghji S. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone 2002;31:236-41. https://doi.org/10.1016/S8756-3282(02)00789-5
  15. Pavalko FM, Norvell SM, Burr DB, Turner CH, Duncan RL, Bidwell JP. A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem 2003;88:104-12. https://doi.org/10.1002/jcb.10284
  16. Yang RS, Lin WL, Chen YZ, Tang CH, Huang TH, Lu BY, et al. Regulation by ultrasound treatment on the integrin expression and differentiation of osteoblasts. Bone 2005;36:276-83. https://doi.org/10.1016/j.bone.2004.10.009
  17. Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Salter DM. Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and beta-catenin in human articular chondrocytes after mechanical stimulation. J Bone Miner Res 2000;15:1501-9. https://doi.org/10.1359/jbmr.2000.15.8.1501
  18. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 2012;40:516-33. https://doi.org/10.1007/s10439-011-0454-7
  19. Escudero JSB, Perez MGB, de Oliveira Rosso MP, Buchaim DV, Pomini KT, Campos LMG, et al. Photobiomodulation therapy (PBMT) in bone repair: a systematic review. Injury 2019;50:1853-67. https://doi.org/10.1016/j.injury.2019.09.031
  20. Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 2015;33:183-4. https://doi.org/10.1089/pho.2015.9848
  21. de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 2016;22:7000417.
  22. Karu TI. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 2008;84:1091-9. https://doi.org/10.1111/j.1751-1097.2008.00394.x
  23. Pyo SJ, Song WW, Kim IR, Park BS, Kim CH, Shin SH, et al. Low-level laser therapy induces the expressions of BMP-2, osteocalcin, and TGF-β1 in hypoxic-cultured human osteoblasts. Lasers Med Sci 2013;28:543-50. https://doi.org/10.1007/s10103-012-1109-0
  24. Frozanfar A, Ramezani M, Rahpeyma A, Khajehahmadi S, Arbab HR. The effects of low level laser therapy on the expression of collagen type I gene and proliferation of human gingival fibroblasts (Hgf3-Pi 53): in vitro study. Iran J Basic Med Sci 2013;16:1071-4.
  25. Manzano-Moreno FJ, Medina-Huertas R, Ramos-Torrecillas J, Garcia-Martinez O, Ruiz C. The effect of low-level diode laser therapy on early differentiation of osteoblast via BMP-2/TGF-β1 and its receptors. J Craniomaxillofac Surg 2015;43:1926-32 https://doi.org/10.1016/j.jcms.2015.08.026
  26. Pejcic A, Mirkovic D. Anti-inflammatory effect of low level laser treatment on chronic periodontitis. Med Laser Appl 2011;26:27-34. https://doi.org/10.1016/j.mla.2010.04.004
  27. Celebi F, Turk T, Bicakci AA. Effects of low-level laser therapy and mechanical vibration on orthodontic pain caused by initial archwire. Am J Orthod Dentofacial Orthop 2019;156:87-93. https://doi.org/10.1016/j.ajodo.2018.08.021
  28. Dalvi SA, Hanna R, Gattani DR. Utilisation of antimicrobial photodynamic therapy as an adjunctive tool for open flap debridement in the management of chronic periodontitis: a randomized controlled clinical trial. Photodiagnosis Photodyn Ther 2019;25:440-7. https://doi.org/10.1016/j.pdpdt.2019.01.023
  29. Kim KA, Choi EK, Ohe JY, Ahn HW, Kim SJ. Effect of low-level laser therapy on orthodontic tooth movement into bone-grafted alveolar defects. Am J Orthod Dentofacial Orthop 2015;148:608-17. https://doi.org/10.1016/j.ajodo.2015.04.034
  30. Milligan M, Arudchelvan Y, Gong SG. Effects of two wattages of low-level laser therapy on orthodontic tooth movement. Arch Oral Biol 2017;80:62-8. https://doi.org/10.1016/j.archoralbio.2017.03.016
  31. de Almeida AL, Medeiros IL, Cunha MJ, Sbrana MC, de Oliveira PG, Esper LA. The effect of low-level laser on bone healing in critical size defects treated with or without autogenous bone graft: an experimental study in rat calvaria. Clin Oral Implants Res 2014;25:1131-6. https://doi.org/10.1111/clr.12239
  32. Garcia VG, Sahyon AS, Longo M, Fernandes LA, Gualberto Junior EC, Novaes VC, et al. Effect of LLLT on autogenous bone grafts in the repair of critical size defects in the calvaria of immunosuppressed rats. J Craniomaxillofac Surg 2014;42:1196-202. https://doi.org/10.1016/j.jcms.2014.02.008
  33. Bosco AF, Faleiros PL, Carmona LR, Garcia VG, Theodoro LH, de Araujo NJ, et al. Effects of low-level laser therapy on bone healing of critical-size defects treated with bovine bone graft. J Photochem Photobiol B 2016;163:303-10. https://doi.org/10.1016/j.jphotobiol.2016.08.040
  34. Abd-Elaal AZ, El-Mekawii HA, Saafan AM, El Gawad LA, El-Hawary YM, Abdelrazik MA. Evaluation of the effect of low-level diode laser therapy applied during the bone consolidation period following mandibular distraction osteogenesis in the human. Int J Oral Maxillofac Surg 2015;44:989-97. https://doi.org/10.1016/j.ijom.2015.04.010
  35. Gurler G, Gursoy B. Investigation of effects of low level laser therapy in distraction osteogenesis. J Stomatol Oral Maxillofac Surg 2018;119:469-76. https://doi.org/10.1016/j.jormas.2018.05.006
  36. El-Maghraby EM, El-Rouby DH, Saafan AM. Assessment of the effect of low-energy diode laser irradiation on gamma irradiated rats' mandibles. Arch Oral Biol 2013;58:796-805. https://doi.org/10.1016/j.archoralbio.2012.10.003
  37. Mota FC, Belo MA, Beletti ME, Okubo R, Prado EJ, Casale RV. Low-power laser therapy for repairing acute and chronic-phase bone lesions. Res Vet Sci 2013;94:105-10. https://doi.org/10.1016/j.rvsc.2012.07.009
  38. Ko CY, Kang H, Seo DH, Jung B, Schreiber J, Kim HS. Low-level laser therapy using the minimally invasive laser needle system on osteoporotic bone in ovariectomized mice. Med Eng Phys 2013;35:1015-9. https://doi.org/10.1016/j.medengphy.2012.10.002
  39. Mostafavinia A, Dehdehi L, Ghoreishi SK, Hajihossainlou B, Bayat M. Effect of in vivo low-level laser therapy on bone marrow-derived mesenchymal stem cells in ovariectomy-induced osteoporosis of rats. J Photochem Photobiol B 2017;175:29-36. https://doi.org/10.1016/j.jphotobiol.2017.08.021
  40. Hidaka K, Mikuni-Takagaki Y, Wada-Takahashi S, Saita M, Kawamata R, Sato T, et al. Low-intensity pulsed ultrasound prevents development of bisphosphonate-related osteonecrosis of the jaw-like pathophysiology in a rat model. Ultrasound Med Biol 2019;45:1721-32. https://doi.org/10.1016/j.ultrasmedbio.2019.02.015
  41. Zaky AA, El Shenawy HM, Harhsh TA, Shalash M, Awad NM. Can low level laser therapy benefit bone regeneration in localized maxillary cystic defects? - a prospective randomized control trial. Open Access Maced J Med Sci 2016;4:720-5. https://doi.org/10.3889/oamjms.2016.140
  42. Statkievicz C, Toro LF, de Mello-Neto JM, de Sa DP, Casatti CA, Issa JPM, et al. Photomodulation multiple sessions as a promising preventive therapy for medication-related osteonecrosis of the jaws after tooth extraction in rats. J Photochem Photobiol B 2018;184:7-17. https://doi.org/10.1016/j.jphotobiol.2018.05.004
  43. Kocyigit ID, Coskunses FM, Pala E, Tugcu F, Onder E, Mocan A. A comparison of the low-level laser versus low intensity pulsed ultrasound on new bone formed through distraction osteogenesis. Photomed Laser Surg 2012;30:438-43. https://doi.org/10.1089/pho.2012.3263
  44. Alazzawi MMJ, Husein A, Alam MK, Hassan R, Shaari R, Azlina A, et al. Effect of low level laser and low intensity pulsed ultrasound therapy on bone remodeling during orthodontic tooth movement in rats. Prog Orthod 2018;19:10. https://doi.org/10.1186/s40510-018-0208-2
  45. Babuccu C, Keklikoglu N, Baydogan M, Kaynar A. Cumulative effect of low-level laser therapy and low-intensity pulsed ultrasound on bone repair in rats. Int J Oral Maxillofac Surg 2014;43:769-76. https://doi.org/10.1016/j.ijom.2013.12.002
  46. Lu JW, Yang F, Ke QF, Xie XT, Guo YP. Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomedicine 2018;14:811-22. https://doi.org/10.1016/j.nano.2017.12.025
  47. Zhang W, Gu J, Li K, Zhao J, Ma H, Wu C, et al. A hydrogenated black TiO2 coating with excellent effects for photothermal therapy of bone tumor and bone regeneration. Mater Sci Eng C Mater Biol Appl 2019;102:458-70. https://doi.org/10.1016/j.msec.2019.04.025
  48. Wang X, Shao J, Abd El Raouf M, Xie H, Huang H, Wang H, et al. Near-infrared light-triggered drug delivery system based on black phosphorus for in vivo bone regeneration. Biomaterials 2018;179:164-74. https://doi.org/10.1016/j.biomaterials.2018.06.039
  49. Tong L, Liao Q, Zhao Y, Huang H, Gao A, Zhang W, et al. Near-infrared light control of bone regeneration with biodegradable photothermal osteoimplant. Biomaterials 2019;193:1-11. https://doi.org/10.1016/j.biomaterials.2018.12.008
  50. Fallahnezhad S, Amini A, Hajihossainlou B, Chien S, Dadras S, Rezaei F, et al. Combined effects of photobiomodulation and alendronate on viability of osteoporotic bone marrow-derived mesenchymal stem cells. J Photochem Photobiol B 2018;182:77-84. https://doi.org/10.1016/j.jphotobiol.2018.03.015
  51. de Miranda JR, Choi IGG, Moreira MS, Martins MD, Cortes ARG, Yoshimoto M. Histologic evaluation of early bone regeneration treated with simvastatin associated with low-level laser therapy. Int J Oral Maxillofac Implants 2019;34:658-64. https://doi.org/10.11607/jomi.6990
  52. de Almeida JM, de Moraes RO, Gusman DJ, Faleiros PL, Nagata MJ, Garcia VG, et al. Influence of low-level laser therapy on the healing process of autogenous bone block grafts in the jaws of systemically nicotine-modified rats: a histomorphometric study. Arch Oral Biol 2017;75:21-30. https://doi.org/10.1016/j.archoralbio.2016.12.003
  53. Torquato LC, Suarez EAC, Bernardo DV, Pinto ILR, Mantovani LO, Silva TIL, et al. Bone repair assessment of critical size defects in rats treated with mineralized bovine bone (Bio-Oss®) and photobiomodulation therapy: a histomorphometric and immunohistochemical study. Lasers Med Sci. In press 2021.
  54. Magri AMP, Fernandes KR, Kido HW, Fernandes GS, Fermino SS, Gabbai-Armelin PR, et al. Bioglass/PLGA associated to photobiomodulation: effects on the healing process in an experimental model of calvarial bone defect. J Mater Sci Mater Med 2019;30:105. https://doi.org/10.1007/s10856-019-6307-x
  55. de Oliveira Goncalves JB, Buchaim DV, de Souza Bueno CR, Pomini KT, Barraviera B, Junior RSF, et al. Effects of low-level laser therapy on autogenous bone graft stabilized with a new heterologous fibrin sealant. J Photochem Photobiol B 2016;162:663-8. https://doi.org/10.1016/j.jphotobiol.2016.07.023
  56. Pomini KT, Buchaim DV, Andreo JC, Rosso MPO, Della Coletta BB, German IJS, et al. Fibrin sealant derived from human plasma as a scaffold for bone grafts associated with photobiomodulation therapy. Int J Mol Sci 2019;20:1761. https://doi.org/10.3390/ijms20071761
  57. Kim H, Choi K, Kweon OK, Kim WH. Enhanced wound healing effect of canine adipose-derived mesenchymal stem cells with low-level laser therapy in athymic mice. J Dermatol Sci 2012;68:149-56. https://doi.org/10.1016/j.jdermsci.2012.09.013