Acknowledgement
The authors would like to acknowledge Ministry of New and Renewable Energy (MNRE) India and PSG college of technology who have supported at various stages of this reported work.
References
- Bayat, M., Pakar, I., Ahmadi, H.R., Cao, M. and Alavi, A.H. (2020), "Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems", Struct. Eng. Mech., Int. J., 73(3), 331-337. https://doi.org/10.12989/sem.2020.73.3.331
- Bhargaw, H.N., Ahmed, M. and Sinha, P. (2013), "Thermo-electric behaviour of NiTi shape memory alloy", Transact. Nonferrous Metals Soc. China, 23(8), 2329-2335. https://doi.org/10.1016/S1003-6326(13)62737-5
- Donmez, B., Ozkan, B. and Kadioglu, F.S. (2010), "Precise position control using shape memory alloy wires", Turk J. Electric. Eng. Comput. Sci., 18(5), 899-912.
- Guo, Z.S., Feng, J., Wang, H., Hu, H. and Zhang, J. (2013), "A new temperature-dependent modulus model of glass/epoxy composite at elevated temperatures", J. Compos. Mater., 47(26), 3303-3310. https://doi.org/10.1177/0021998312464080
- Gupta, K., Sawhney, S., Jain, S.K. and Darpe, A.K. (2003), "Stiffness characteristics of fibre-reinforced composite shaft embedded with shape memory alloy wires", Defence Sci. J., 53(2), 167-173. https://doi.org/10.14429/dsj.53.2263
- Han, Y.-L. (2005), "NiTi-wire shape memory alloy dampers to simultaneously damp tension, compression, and torsion", J. Vib. Control, 11(8), 1067-1084. https://doi.org/10.1177/1077546305055773
- Jagadeesh, V., Yuvaraja, M., Chandhru, A. and Viswanathan, P. (2018), "Investigations on Vibration Characteristics of Sma Embedded Horizontal Axis Wind Turbine Blade", IOP Conference Series: Materials Science and Engineering, Vol. 310, No. 1, p. 012067, Bengaluru, India, August. https://doi.org/10.1088/1757-899X/310/1/012067
- Khot, S.M., Yelve, N.P., Tomar, R., Desai, S. and Vittal, S. (2012), "Active vibration control of cantilever beam by using PID based output feedback controller", J. Vib. Control, 18(3), 366-372. https://doi.org/10.1177/1077546311406307
- Lau, K.T. (2002), "Vibration characteristics of SMA composite beams with different boundary conditions", Mater. Des., 23(8), 741-749. https://doi.org/10.1016/S0261-3069(02)00069-9
- Lau, K.T., Zhou, L.M. and Tao, X.M. (2002), "Control of natural frequencies of a clamped-clamped composite beam with embedded shape memory alloy wires", Compos. Struct., 58, 39-47. https://doi.org/10.1016/S0263-8223(02)00042-9
- Lee, J.W., Han, J.H., Shin, H.K. and Bang, H.J. (2014), "Active load control of wind turbine blade section with trailing edge flap: Wind tunnel testing", J. Intell. Mater. Syst. Struct., 25(18), 2246-2255. https://doi.org/10.1177/1045389X14544143
- Lin, Y.J., Lee, T., Choi, B. and Saravanos, D. (1999), "An application of smart-structure technology to rotor blade tip vibration control", J. Vib. Control, 5(4), 639-658. https://doi.org/10.1177/107754639900500408
- Lu, X., Li, G., Liu, L., Zhu, X. and Tu, S.T. (2017), "Effect of ambient temperature on compressibility and recovery of NiTi shape memory alloys as static seals", Adv. Mech. Eng., 9(2), 1-9. https://doi.org/10.1177/1687814017692287
- Ma, Y., Wang, M., Yang, X., Zhang, D. and Hong, J. (2016), "Experimental investigation on the vibration tuning of a beam with shape memory alloy", Proceedings of Turbo Expo: Power for Land, Sea, and Air, August, pp. 1-7. https://doi.org/10.1115/GT2015-42262
- Mani, Y., Veeraragu, J., Sangameshwar, S. and Rangaswamy, R. (2020), "Dynamic behavior of smart material embedded wind turbine blade under actuated condition", Wind Struct., Int. J., 30(2), 211-217. https://doi.org/10.12989/was.2020.30.2.211
- Mouleeswaran, S.K., Mani, Y., Keerthivasan, P. and Veeraragu, J. (2018), "Vibration control of small horizontal axis wind turbine blade with shape memory alloy", Smart Struct. Syst., Int. J., 21(3), 257-262. https://doi.org/10.12989/sss.2018.21.3.257
- Ni, Q.Q., Zhang, R.X., Natsuki, T. and Iwamoto, M. (2007), "Stiffness and vibration characteristics of SMA/ER3 composites with shape memory alloy short fibers", Compos. Struct., 79(4), 501-507. https://doi.org/10.1016/j.compstruct.2006.02.009
- Qiu, Z.C. (2014), "Experiments on vibration suppression for a piezoelectric flexible cantilever plate using nonlinear controllers", J. Intell. Mater. Syst. Struct., 21(2), 300-319. https://doi.org/10.1177/1077546313487762
- Seelecke, S. and Muller, I. (2004), "Shape memory alloy actuators in smart structures: Modeling and simulation", Appl. Mech. Rev., 57(1), 23. https://doi.org/10.1115/1.1584064
- Simonovic, A.M., Jovanovic, M.M., Lukic, N.S., Zoric, N.D., Stupar, S.N. and Ilic, S.S. (2016), "Experimental studies on active vibration control of smart plate using a modified PID controller with optimal orientation of piezoelectric actuator", J. Vib. Control, 22(11), 2619-2631. https://doi.org/10.1177/1077546314549037
- Shu, S.G., Lagoudas, D.C., Hughes, D. and Wen, J.T. (1997), "Modeling of a flexible beam actuated by shape memory alloy wires", Smart Mater. Struct., 6(3), 265. https://doi.org/10.1088/0964-1726/6/3/005
- Tang, A.Y., Li, X.F., Wu, J.X. and Lee, K.Y. (2015), "Flapwise bending vibration of rotating tapered Rayleigh cantilever beams", J. Constr. Steel Res., 112, 1-9. https://doi.org/10.1016/j.jcsr.2015.04.010
- Vasundhara, M.G., Senthilkumar, M. and Kalavathi, G.K. (2019), "A distributed parametric model of Brinson shape memory alloy based resonant frequency tunable cantilevered PZT energy harvester", Int. J. Mech. Mater. Des., 15(3), 555-568. https://doi.org/10.1007/s10999-018-9429-2
- Wang, B., Wang, Z. and Zuo, X. (2017a), "Frequency equation of flexural vibrating cantilever beam considering the rotary inertial moment of an attached mass", Mathe. Probl. Eng. https://doi.org/10.1155/2017/1568019
- Wang, Z., Qiao, P. and Shi, B. (2017b), "A comprehensive study on active Lamb wave-based damage identification for plate-type structures", Smart Struct. Syst., Int. J., 20(6), 759-767. https://doi.org/10.12989/sss.2017.20.6.759
- Wieseman, C.D. (1988), NASA Technical Memorandum Methodology For Matching Experimental And Computational Aerodynamic Data, Langley Research Center.
- Williams, K.A., Chiu, G.C. and Bernhard, R.J. (2005), "Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber", J. Sound Vib., 280(1-2), 211-234. https://doi.org/10.1016/j.jsv.2003.12.040
- Yuvaraja, M. and Kumar, M.S. (2012), "Experimental studies on SMA spring based dynamic vibration absorber for active vibration control", Eur. J. Sci. Res., 77(2), 240-251.