DOI QR코드

DOI QR Code

Double-frequency passive deformation sensor based on two-layer patch antenna

  • Xue, Songtao (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Yi, Zhuoran (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Xie, Liyu (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Wan, Guochun (Department of Electronic Science and Technology, Tongji University)
  • Received : 2020.05.17
  • Accepted : 2021.02.20
  • Published : 2021.06.25

Abstract

To avoid the issues of incomplete strain transfer ratio and insufficient bonding strength of a monolithic stressed antenna, this paper presents an unstressed deformation sensor based on two-layer patch antenna for structural health monitoring. The proposed sensor is composed of a monolithic patch antenna and a stacked patch generating two fundamental resonant frequencies within a 3-to-7 GHz band. The resonant frequencies' shifts caused by the offset of the stacked patch were selected as the sensing parameters. An equivalent circuit was used to analyze the sensing method, which shows the relative displacement to be linear to the shift of resonant frequencies. This phenomenon was then checked by numerical simulation using the Ansoft High Frequency Structure Simulator 15 (HFSS15) and experiments in laboratory using both wired and wireless setups. Furthermore, the accuracy of measurement is verified to be increased by combining two resonant frequencies.

Keywords

Acknowledgement

This research was funded by the National Natural Science Foundation of China (Grant No. 52078375), the Key Laboratory of Performance Evolution and Control for Engineering Structures (Tongji University), the Ministry of Education of the People's Republic of China (grant number 2018KF-4), and the Fundamental Research Funds for the Central Universities.

References

  1. Abdulkarem, M., Samsudin, K., Rokhani, F.Z. and A Rasid, M.F. (2019), "Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges, and future direction", Struct. Health Monit., 19(3). https://doi.org/10.1177/1475921719854528
  2. Alam, T., Faruque, M.R.I. and Islam, M.T. (2015), "Printed circular patch wideband antenna for wireless communication", Informacije MIDEM, 44(3), 212-217.
  3. Ayyildiz, C., Erdem, H.E., Dirikgil, T., Dugenci, O., Kocak, T., Altun, F. and Gungor, V.C. (2019), "Structure health monitoring using wireless sensor networks on structural elements", Ad Hoc Netw., 82, 68-76. https://doi.org/10.1016/j.adhoc.2018.06.011
  4. Balanis, C.A. (2016), Antenna Theory: Analysis and Design, John Wiley & Sons.
  5. Bernhard, J.T. and Tousignant, C.J. (1999), "Resonant frequencies of rectangular microstrip antennas with flush and spaced dielectric superstrates", IEEE Trans. Antennas Propag., 47(2), 302-308. https://doi.org/10.1109/8.761070
  6. Bhattacharyya, R., Floerkemeier, C. and Sarma, S. (2009), "Towards tag antenna based sensing-An RFID displacement sensor", Proceedings of the IEEE International Conference on RFID, Orlando, FL, USA, April.
  7. Cho, C., Yi, X., Li, D., Wang, Y. and Tentzeris, M.M. (2016), "Passive wireless frequency doubling antenna sensor for strain and crack sensing", IEEE Sens. J., 16(14), 5725-5733. https://doi.org/10.1109/JSEN.2016.2567221
  8. Chung, K.L. and Mohan, A.S. (2003), "The effect of offset patch on the broadband characteristics of an electromagnetically coupled patch antenna", Microw. Opt. Technol. Lett., 38(5), 345-348. https://doi.org/10.1002/mop.11056
  9. Da Xu, K., Zhu, J., Liao, S. and Xue, Q. (2018), "Wideband patch antenna using multiple parasitic patches and its array application with mutual coupling reduction", IEEE Access, 6, 42497-42506. https://doi.org/10.1109/ACCESS.2018.2860594
  10. Godara, L.C. (2018), "Microstrip Patch Antennas", In: Handbook of Antennas in Wireless Communications (pp. 190-216), CRC Press.
  11. Hassani, H.R. and Mirshekar-Syahkal, D. (1995), "Study of electromagnetically coupled stacked rectangular patch antennas", IEE Pro: Microw. Anten. Propag., 142(1), 7-13. https://doi.org/10.1049/ip-map:19951540
  12. Hu, J., Hao, Z.-C. and Hong, W. (2017), "Design of a wideband quad-polarization reconfigurable patch antenna array using a stacked structure", IEEE Trans. Antennas Propag., 65(6), 3014-3023. https://doi.org/10.1109/TAP.2017.2695529
  13. Leung, C.K.Y., Elvin, N., Olson, N., Morse, T.F. and He, Y.-F. (2000), "A novel distributed optical crack sensor for concrete structures", Eng. Fract. Mech., 65(2-3), 133-148. https://doi.org/10.1016/S0013-7944(99)00112-5
  14. Li, Y. and Bowler, N. (2010), "Resonant frequency of a rectangular patch sensor covered with multilayered dielectric structures", IEEE Trans. Antennas Propag., 58(6), 1883-1889. https://doi.org/10.1109/TAP.2010.2046871
  15. Malekpoor, H. and Hamidkhani, M. (2019), "Compact multi-band stacked circular patch antenna for wideband applications with enhanced gain", Electromagnetics, 39(4), 241-253. https://doi.org/10.1080/02726343.2019.1595379
  16. Marindra, A.M.J. and Tian, G.Y. (2019), "Multiresonance chipless RFID sensor tag for metal defect characterization using principal component analysis", IEEE Sens. J., 19(18), 8037-8046. https://doi.org/10.1109/JSEN.2019.2917840
  17. McGee, K., Anandarajah, P. and Collins, D. (2019), "A review of chipless remote sensing solutions based on RFID technology", Sensors, 19(22), 4829. https://doi.org/10.3390/s19224829
  18. Mohammad, I. and Huang, H. (2010), "Monitoring fatigue crack growth and opening using antenna sensors", Smart Mater. Struct., 19(5), 55023. https://doi.org/10.1088/0964-1726/19/5/055023
  19. Mohammad, I. and Huang, H. (2012), "Pressure and shear sensing based on microstrip antennas", Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012, San Diego, CA, USA, May. https://doi.org/10.1117/12.914979
  20. Mohammad, I., Gowda, V., Zhai, H. and Huang, H. (2011), "Detecting crack orientation using patch antenna sensors", Meas. Sci. Technol., 23(1), 15102. https://doi.org/10.1088/0957-0233/23/1/015102
  21. Moreno-Gomez, A., Perez-Ramirez, C.A., Dominguez-Gonzalez, A., Valtierra-Rodriguez, M., Chavez-Alegria, O. and Amezquita-Sanchez, J.P. (2018), "Sensors used in structural health monitoring", Arch. Comput. Method Eng., 25(4), 901-918. https://doi.org/10.1007/s11831-017-9217-4
  22. Pandey, V.K. and Vishvakarma, B.R. (2005), "Theoretical analysis of linear array antenna of stacked patches", In. J. Rad. Spac. Phys., 34(2), 125-130.
  23. Rajo-Iglesias, E., Segovia-Vargas, D., Vazquez-Roy, J.L., Gonzalez-Posadas, V. and Martin-Pascual, C. (2001), "Bandwidth enhancement in noncentered stacked patches", Microw. Opt. Technol. Lett., 31(1), 53-56. https://doi.org/10.1002/mop.1355
  24. Rajo-Iglesias, E., Villaseca-Sanchez, G. and Martin-Pascual, C. (2002), "Input impedance behavior in offset stacked patches", IEEE Antennas Wirel. Propag. Lett., 1, 28-30. https://doi.org/10.1109/LAWP.2002.802582
  25. Rajo-Iglesias, E., Vazquez-Roy, J.L., Inclan-Sanchez, L., Segovia-Vargas, D., Gonzalez-Posadas, V. and Martin-Pascual, C. (2004), "Offset stacked patches behavior in an array", Microw. Opt. Technol. Lett., 40(3), 262-265. https://doi.org/10.1002/mop.11347
  26. Sanders, J.W., Yao, J. and Huang, H. (2015), "Microstrip patch antenna temperature sensor", IEEE Sens. J., 15(9), 5312-5319. https://doi.org/10.1109/JSEN.2015.2437884
  27. Soman, R.N., Onoufriou, T., Kyriakides, M.A., Votsis, R.A. and Chrysostomou, C.Z. (2014), "Multi-type, multi-sensor placement optimization for structural health monitoring of long span bridges", Smart Struct. Syst., Int. J., 14(1), 55-70. https://doi.org/10.12989/sss.2014.14.1.055
  28. Tchafa, F.M. and Huang, H. (2018), "Microstrip patch antenna for simultaneous strain and temperature sensing", Smart Mater. Struct., 27(6), 65019. https://doi.org/10.1088/1361-665X/aabd47
  29. Waterhouse, R. (2007), Printed Antennas for Wireless Communications, John Wiley & Sons.
  30. Woo, S., Lee, S. and Chung, L. (2011), "Seismic response control of elastic and inelastic structures by using passive and semiactive tuned mass dampers", Smart Struct. Syst., Int. J., 8(3), 239-252. https://doi.org/10.12989/sss.2011.8.3.239
  31. Xue, S., Yi, Z., Xie, L., Wan, G. and Ding, T. (2019a), "A passive wireless crack sensor based on patch antenna with overlapping sub-patch", Sensors, 19(19), 4327. https://doi.org/10.3390/s19194327
  32. Xue, S., Xu, K., Xie, L. and Wan, G. (2019b), "Crack sensor based on patch antenna fed by capacitive microstrip lines", Smart Mater. Struct., 28(8), 085012. https://doi.org/10.1088/1361-665X/ab2834
  33. Xue, S., Yi, Z., Xie, L., Wan, G. and Ding, T. (2019c), "A displacement sensor based on a normal mode helical antenna", Sensors, 19(17), 1-18. https://doi.org/10.3390/s19173767
  34. Xue, S., Zheng, Z., Guan, S., Xie, L., Wan, G. and Wan, C. (2020a), "A Capacitively-Fed Inverted-F Antenna for Displacement Detection in Structural Health Monitoring", Sensors, 20(18), 1-17. https://doi.org/10.3390/s20185310
  35. Xue, S., Jiang, K., Guan, S., Xie, L., Wan, G. and Wan, C. (2020b), "Long-Range Displacement Meters Based on Chipped Circular Patch Antenna", Sensors, 20(17), 1-16. https://doi.org/10.3390/s20174884
  36. Yadava, R.L. and Vishvakarma, B.R. (2000), "Analysis of electromagnetically coupled two-layer elliptical microstrip stacked antennas", Int. J. Electron., 87(8), 981-993. https://doi.org/10.1080/002072100404631
  37. Yao, J., Tchafa, F.M., Jain, A., Tjuatja, S. and Huang, H. (2016), "Far-field interrogation of microstrip patch antenna for temperature sensing without electronics", IEEE Sens. J., 16(19), 7053-7060. https://doi.org/10.1109/JSEN.2016.2597739
  38. Yi, X., Cho, C., Cooper, J., Wang, Y., Tentzeris, M.M. and Leon, R.T. (2013), "Passive wireless antenna sensor for strain and crack sensing-Electromagnetic modeling, simulation, and testing", Smart Mater. Struct., 22(8), 85009. https://doi.org/10.1088/0964-1726/22/8/085009
  39. Yi, X., Cho, C., Wang, Y. and Tentzeris, M.M. (2016), "Battery-free slotted patch antenna sensor for wireless strain and crack monitoring", Smart Struct. Syst., Int. J., 18(6), 1217-1231. https://doi.org/10.12989/sss.2016.18.6.1217
  40. You, C., Tentzeris, M.M. and Hwang, W. (2007), "Multilayer effects on microstrip antennas for their integration with mechanical structures", IEEE Trans. Antennas Propag., 55(4), 1051-1058. https://doi.org/10.1109/TAP.2007.893401