DOI QR코드

DOI QR Code

원발성 비점액성 직장암 환자에서 자기공명영상 기반 텍스처 분석 변수와 KRAS 유전자 변이와의 연관성

Association between Texture Analysis Parameters and Molecular Biologic KRAS Mutation in Non-Mucinous Rectal Cancer

  • 조성재 (인제대학교 의과대학 해운대백병원 영상의학과) ;
  • 김승호 (인제대학교 의과대학 해운대백병원 영상의학과) ;
  • 박상준 (서울대학교병원 영상의학과) ;
  • 이예다운 (인제대학교 의과대학 해운대백병원 영상의학과) ;
  • 손정희 (인제대학교 의과대학 해운대백병원 영상의학과)
  • Sung Jae Jo (Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital) ;
  • Seung Ho Kim (Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital) ;
  • Sang Joon Park (Department of Radiology, Seoul National University Hospital) ;
  • Yedaun Lee (Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital) ;
  • Jung Hee Son (Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital)
  • 투고 : 2020.04.06
  • 심사 : 2020.06.23
  • 발행 : 2021.03.01

초록

목적 원발성 비점액성 직장암 환자에서 자기공명영상 기반 텍스처 분석 변수와 Kirsten rat sarcoma viral oncogene homolog (이하 KRAS) 유전자 변이와의 연관성을 조사한다. 방법 조직학적으로 비점액성 직장 선암종으로 진단받고 KRAS 유전자 정보가 있으며 치료 전 직장 자기공명영상을 시행한 79명의 환자를 훈련 데이터셋(n = 46)과 검증 데이터셋(n = 33)으로 나누었다. 텍스처 분석은 축상면 T2 강조영상에서 시행되었다. 텍스처 변수와 KRAS 유전자 변이와의 연관성은 Mann-Whitney U 검정을 통해 통계적으로 분석하였다. 수신기작동 특성 곡선(receiver operating characteristic) 분석을 이용하여 KRAS 유전자 변이를 예측하기 위한 최적의 절단값을 산출하였다. 이 절단값은 검증 데이터셋을 사용해 검증되었다. 결과 훈련 데이터셋에서 왜도(skewness)는 유전자 변이가 있는 집단(n = 22명)에서 유전자 변이가 없는 집단(n = 24명)보다 유의하게 높았다(0.221 ± 0.283; -0.006 ± 0.178, p = 0.003). 왜도의 곡선 하 면적 값(area under the curve)은 0.757 (95% 신뢰구간, 0.606-0.872)로 정확도는 71%, 민감도는 64%, 특이도는 78%였다. 다른 텍스처 변수들은 두 집단 간 유의한 차이를 보이지 않았다(p > 0.05). 검증 데이터셋에 절단값 0.078을 적용하였을 때 정확도는 76%, 민감도는 86%, 특이도는 68%였다. 결론 원발성 비점액성 직장암 환자에서 왜도는 KRAS 유전자 변이와 연관성을 보였다.

Purpose To evaluate the association between magnetic resonance imaging (MRI)-based texture parameters and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation in patients with non-mucinous rectal cancer. Materials and Methods Seventy-nine patients who had pathologically confirmed rectal non-mucinous adenocarcinoma with or without KRAS-mutation and had undergone rectal MRI were divided into a training (n = 46) and validation dataset (n = 33). A texture analysis was performed on the axial T2-weighted images. The association was statistically analyzed using the Mann-Whitney U test. To extract an optimal cut-off value for the prediction of KRAS mutation, a receiver operating characteristic curve analysis was performed. The cut-off value was verified using the validation dataset. Results In the training dataset, skewness in the mutant group (n = 22) was significantly higher than in the wild-type group (n = 24) (0.221 ± 0.283; -0.006 ± 0.178, respectively, p = 0.003). The area under the curve of the skewness was 0.757 (95% confidence interval, 0.606 to 0.872) with a maximum accuracy of 71%, a sensitivity of 64%, and a specificity of 78%. None of the other texture parameters were associated with KRAS mutation (p > 0.05). When a cut-off value of 0.078 was applied to the validation dataset, this had an accuracy of 76%, a sensitivity of 86%, and a specificity of 68%. Conclusion Skewness was associated with KRAS mutation in patients with non-mucinous rectal cancer.

키워드

과제정보

This work was supported by the 2019 Inje University research grant.

참고문헌

  1. Srinivasan GN, Shobha G. Statistical texture analysis. Proc World Acad Sci Eng Technol 2008;36:1264-1269 
  2. Materka A. Texture analysis methodologies for magnetic resonance imaging. Dialogues Clin Neurosci 2004;6:243-250 
  3. Duvauferrier R, Bezy J, Bertaud V, Toussaint G, Morelli J, Lasbleiz J. Texture analysis software: integration with a radiological workstation. Stud Health Technol Inform 2012;180:1030-1034 
  4. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 2012;3:573-589 
  5. Gadkari D. Image quality analysis using GLCM [dissertation]. Orlando: University of Central Florida 2004 
  6. De Cecco CN, Ganeshan B, Ciolina M, Rengo M, Meinel FG, Musio D, et al. Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Invest Radiol 2015;50:239-245 
  7. Jalil O, Afaq A, Ganeshan B, Patel UB, Boone D, Endozo R, et al. Magnetic resonance based texture parameters as potential imaging biomarkers for predicting long-term survival in locally advanced rectal cancer treated by chemoradiotherapy. Colorectal Dis 2017;19:349-362 
  8. Liu L, Liu Y, Xu L, Li Z, Lv H, Dong N, et al. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging 2017;45:1798-1808 
  9. Horvat N, Veeraraghavan H, Khan M, Blazic I, Zheng J, Capanu M, et al. MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy. Radiology 2018;287:833-843 
  10. Cui Y, Yang X, Shi Z, Yang Z, Du X, Zhao Z, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol 2019;29:1211-1220 
  11. Liu Z, Zhang XY, Shi YJ, Wang L, Zhu HT, Tang Z, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res 2017;23:7253-7262 
  12. Nie K, Shi L, Chen Q, Hu X, Jabbour SK, Yue N, et al. Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI. Clin Cancer Res 2016;22:5256-5264 
  13. Liu H, Zhang C, Wang L, Luo R, Li J, Zheng H, et al. MRI radiomics analysis for predicting preoperative synchronous distant metastasis in patients with rectal cancer. Eur Radiol 2019;29:4418-4426 
  14. Chen LD, Liang JY, Wu H, Wang Z, Li SR, Li W, et al. Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics. Life Sci 2018;208:55-63 
  15. Sun Y, Hu P, Wang J, Shen L, Xia F, Qing G, et al. Radiomic features of pretreatment MRI could identify T stage in patients with rectal cancer: preliminary findings. J Magn Reson Imaging 2018;48:615-621 
  16. Newton KF, Newman W, Hill J. Review of biomarkers in colorectal cancer. Colorectal Dis 2012;14:3-17 
  17. Andreyev HJ, Norman AR, Cunningham D, Oates JR, Clarke PA. Kirsten ras mutations in patients with colorectal cancer: the multicenter "RASCAL" study. J Natl Cancer Inst 1998;90:675-684 
  18. Andreyev HJ, Norman AR, Cunningham D, Oates J, Dix BR, Iacopetta BJ, et al. Kirsten ras mutations in patients with colorectal cancer: the 'RASCAL II' study. Br J Cancer 2001;85:692-696 
  19. Taylor FG, Swift RI, Blomqvist L, Brown G. A systematic approach to the interpretation of preoperative staging MRI for rectal cancer. AJR Am J Roentgenol 2008;191:1827-1835 
  20. Nougaret S, Reinhold C, Mikhael HW, Rouanet P, Bibeau F, Brown G. The use of MR imaging in treatment planning for patients with rectal carcinoma: have you checked the "DISTANCE"? Radiology 2013;268:330-344 
  21. Oh JE, Kim MJ, Lee J, Hur BY, Kim B, Kim DY, et al. Magnetic resonance-based texture analysis differentiating KRAS mutation status in rectal cancer. Cancer Res Treat 2020;52:51-59 
  22. Choi TW, Kim JH, Park SJ, Ahn SJ, Joo I, Han JK. Risk stratification of gallbladder polyps larger than 10 mm using high-resolution ultrasonography and texture analysis. Eur Radiol 2018;28:196-205 
  23. Park HJ, Kim JH, Choi SY, Lee ES, Park SJ, Byun JY, et al. Prediction of therapeutic response of hepatocellular carcinoma to transcatheter arterial chemoembolization based on pretherapeutic dynamic CT and textural findings. AJR Am J Roentgenol 2017;209:W211-W220 
  24. Choi TW, Kim JH, Yu MH, Park SJ, Han JK. Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and computerized texture analysis. Acta Radiol 2018;59:383-392 
  25. Ahn SJ, Kim JH, Park SJ, Han JK. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol 2016;85:1867-1874 
  26. Ryu YJ, Choi SH, Park SJ, Yun TJ, Kim JH, Sohn CH. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One 2014;9:e108335 
  27. Meng X, Xia W, Xie P, Zhang R, Li W, Wang M, et al. Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer. Eur Radiol 2019;29:3200-3209 
  28. Yang L, Dong D, Fang M, Zhu Y, Zang Y, Liu Z, et al. Can Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? Eur Radiol 2018;28:2058-2067 
  29. Arvelo F, Sojo F, Cotte C. Biology of colorectal cancer. Ecancermedicalscience 2015;9:520