DOI QR코드

DOI QR Code

Image Quality for TV Genre Depending on Viewers Experience

시청자 경험에 의한 TV장르별 화질

  • Received : 2021.02.17
  • Accepted : 2021.03.24
  • Published : 2021.05.30

Abstract

Conventional image quality studies have been focused on 'naturalness' and has relied on memory color. Memory colors are mainly formed for familiar objects with prior experience, and the more faithfully these memories are reflected, the more naturalness of the reproduced image quality increases. In particular, the brightness and saturation of memory colors play an important role in increasing the preference of image quality as well as naturalness. Therefore, in the case of existing image quality studies, image quality characteristics were studied focusing on natural objects and people with memory. We extracted representative images of each genre (sports, documentaries, news, entertainment and music, and movies), adjusted the brightness, contrast, and saturation of each image, and conducted an experiment to evaluate perceived quality. Based on situational context, the results of this classification indicated that genres of television content can be divided into two categories: proximate and indirect experiences. Proximate experience best characterizes outdoor sports, dramas, and nature documentaries, where their image qualities have shown to have a strong correlation with brightness and contrast. On the other hand, indirect experience best characterizes news, music shows and SF/action movies. The image quality perception for indirect experiences was shown to be closely related to and optimized by contrast and saturation.

기존 정지 이미지를 활용한 화질 연구는 '자연스러움'에 초점을 맞추고 있으며 이는 기억색과 깊은 관련을 맺고 있다. 기억색은 주로 선경험이 있는 친숙한 대상에 대해 형성되며 이러한 기억색을 충실히 반영할수록 화면에 재현된 화질의 자연스러움이 증가한다. 특히 기억색의 밝기와 채도는 '자연스러움'뿐만 아니라 화질의 선호도를 증가시키는데 중요한 역할을 갖는다. 이에 기존의 화질 연구의 경우 기억색이 있는 자연물과 인물 중심으로 화질 특성을 연구한 바 있다. 본 연구에서는 TV 컨텐츠를 장르별로 분류하여 각 장르별 화질 특성을 도출하였다. 이를 위해 각 장르(스포츠, 다큐멘터리, 뉴스, 오락 및 음악, 영화)의 대표 이미지를 추출하고 각 이미지의 밝기, 대비, 채도를 조절한 후 인지된 화질을 평가하는 실험을 진행하였다. 실험 결과, TV 컨텐츠 장르를 상황적 맥락에 따라 근접 경험과 간접 경험의 두 가지 범주로 분류할 수 있었다. 근접 경험은 야외 스포츠, 드라마, 자연 다큐멘터리 컨텐츠를 포함하며 근접 경험 컨텐츠의 화질은 밝기와 대비와 밀접한 관련이 있었다. 간접 경험은 뉴스, 음악 쇼, SF/액션 영화 컨텐츠를 포함하며 해당 컨텐츠의 화질은 대조와 채도와 밀접하게 연관되었다. 이러한 결과에 따라 근접 경험으로 분류되는 컨텐츠의 경우 밝기와 대비 조절에 따라 최적 화질을 구현할 수 있으며, 간접 경험으로 분류되는 컨텐츠의 경우 대조와 채도 조절에 따라 최적 화질을 구현할 수 있다.

Keywords

References

  1. E. A. Fedorovskaya & H. De Ridder, "Subjective matters: from image quality to image psychology," Human Vision and Electronic Imaging XVIII, vol. 8651, pp. 86510O, Mar. 2013.
  2. I. Heynderickx & H. de Ridder, "From image quality to atmosphere experience: how evolutions in technology impact experience assessment," Human Vision and Electronic Imaging XVIII, vol. 8651, pp. 86510I, Mar. 2013. https://doi.org/10.1117/12.2007223
  3. E. A. Fedorovskaya, H. De Ridder, & F. J. Blommaert, "Chroma variations and perceived quality of color images of natural scenes," Color Research & Application, vol. 22(2), pp. 96-110, 1997. https://doi.org/10.1002/(SICI)1520-6378(199704)22:2<96::AID-COL5>3.0.CO;2-Z
  4. A. Tremeau & C. Charrier, "Influence of chromatic changes on the perception of color image quality," Color Research & Application, vol. 25(3), pp. 200-213, 2000. https://doi.org/10.1002/(sici)1520-6378(200006)25:3@@<@@200::aid-col9@@>@@3.0.co;2-b
  5. R. Halonen, S. Westman & P. Oittinen, "Naturalness and interestingness of test images for visual quality evaluation," Image Quality and System Performance VIII, vol. 7867, pp. 78670Z, Jan. 2011. https://doi.org/10.1117/12.872390
  6. G. Shing Sheng & H. Po Sung, "Influences of psychological factors on image color preferences evaluation," Color Research & Application, vol. 35(3), pp. 213-232, 2010. https://doi.org/10.1002/col.20570
  7. J. Radun, T. Virtanen, G. Nyman & J. L.Olives, "Explaining multivariate image Quality-Interpretation-based quality approach" Proc. of ICIS, vol. 6, pp. 119-121, 2006.
  8. H. de Ridder, "Naturalness and image quality: saturation and lightness variation in color images of natural scenes," Journal of imaging science and technology, vol. 40(6), pp. 487-493, 1996.
  9. F. Naccari, S. Battiato, A. Capra, and A. Castorina, "Natural scene classification for color enhancement," IEEE Trans. Consumer Electron., vol. 51, no. 1, pp. 234-239, 2005. https://doi.org/10.1109/TCE.2005.1405725
  10. K. Seshadrinathan, R. Soundararajan, A. C. Bovik & L. K. Cormack, "Study of subjective and objective quality assessment of video," IEEE transactions on image processing, vol. 19(6), pp. 1427-1441, 2010. https://doi.org/10.1109/TIP.2010.2042111
  11. J. Perez-Carpinell, M. D. De Fez, R. Baldovi & J. C. Soriano, "Familiar objects and memory color," Color Research & Application, vol. 23(6), pp. 416-427, 1998. https://doi.org/10.1002/(sici)1520-6378(199812)23:6@@<@@416::aid-col10@@>@@3.0.co;2-n
  12. T. Hansen, M. Olkkonen, S. Walter & K. R. Gegenfurtner, "Memory modulates color appearance," Nature neuroscience, vol. 9(11), pp. 1367, 2006. https://doi.org/10.1038/nn1794
  13. E.J. Lee and Y.H. Ha, "Favorite color correction for reference color," IEEE Trans. Consumer Electron, vol. 44, no. 1, pp. 10-15, 1998. https://doi.org/10.1109/30.663725
  14. P. G. Engeldrum, "Psychometric scaling: a toolkit for imaging systems development," Imcotek press, Winchester, USA, 2000, pp. 201.
  15. C. J. Bartleson, "The combined influence of sharpness and graininess on the quality of colour prints," The Journal of Photographic Science, vol. 30(2), pp. 33-38, 1982. https://doi.org/10.1080/00223638.1982.11738152
  16. P. G. Engeldrum, "Extending image quality model," IS and TS PICS Conference, pp. 65-69, 2002.
  17. J. You, S. Chien, "Saturation Enhancement of Blue Sky for Increasing Preference of Scenery Images" IEEE Trans. Consumer Electron, vol. 54, no. 2, pp. 762-768, 2008. https://doi.org/10.1109/TCE.2008.4560158
  18. P. Bodrogi & T. Tarczali, "Colour memory for various sky, skin, and plant colours: effect of the image context," Color Research & Application, vol. 26(4), pp. 278-289, 2001. https://doi.org/10.1002/col.1034