Acknowledgement
The authors acknowledge the funding support from the National Natural Science Foundation of China (Grant No. 11872173) and Shenzhen Science and Technology Plan Project (JSGG20180507183020876).
References
- Achieng, K.O. (2019), "Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural networks vs support vector regression models", Comput. Geosci., 133, 104320, https://doi.org/10.1016/j.cageo.2019.104320.
- Al-Bared, M.A.M., Harahap, I.S.H., Marto, A., Abad, S.V.A.N. and Ali, M.O.A. (2019), "Undrained shear strength and microstructural characterization of treated soft soil with recycled materials", Geomech. Eng., 18(4), 427-437. https://doi.org/10.12989/gae.2019.18.4.427.
- Aminian, A. (2017), "Predicting the effective viscosity of nanofluids for the augmentation of heat transfer in the process industries", J. Mol. Liq., 229, 300-308. https://doi.org/10.1016/j.molliq.2016.12.071.
- Ansari, H.R., Zarei, M.J., Sabbaghi, S. and Keshavarz, P. (2018), "A new comprehensive model for relative viscosity of various nanofluids using feed-forward back-propagation MLP neural networks", Int. Commun. Heat Mass., 91 158-164. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.012.
- Arel, E. (2012), "Predicting the spatial distribution of soil profile in Adapazari/Turkey by artificial neural networks using CPT data", Comput. Geosci., 43, 90-100. https://doi.org/10.1016/j.cageo.2012.01.021.
- Atapattu, D D., Chhabra, R.P. and Uhlherr, P.H.T. (1990), "Wall effect for spheres falling at small reynolds number in a viscoplastic medium", J. Non-Newton Fluid, 38(1), 31-42. https://doi.org/10.1016/0377-0257(90)85031-S.
- Beigzadeh, R., Rahimi, M. and Parvizi, M. (2013), "Experimental study and genetic algorithm-based multi-objective optimization of thermal and flow characteristics in helically coiled tubes", Heat Mass Transfer, 49(9), 1307-1318. https://doi.org/10.1007/s00231-013-1176-1.
- Chafe, N.P. and de Bruyn, J.R. (2005), "Drag and relaxation in a bentonite clay suspension", J. Non-Newton Fluid, 131(1), 44-52. https://doi.org/10.1016/j.jnnfm.2005.08.010.
- Chen, G., Wang, Z., Zuo, X., Du, X. and Gao, H. (2013), "Shaking table test on the seismic failure characteristics of a subway station structure on liquefiable ground", Earthq. Eng. Struct. D, 42(10), 1489-1507. https://doi.org/10.1002/eqe.2283.
- Chhabra, R.P. and Richardson, J.F. (2008), Chapter 1, Non-Newtonian Fluid Behaviour, 1-55.
- Cybenko, G. (1989), "Approximation by superpositions of a sigmoidal function", Math. Control Signal. Syst., 2(4), 303-314. https://doi.org/10.1007/BF02551274.
- Fang, X., Luo, H., Tang, J., (2005). "Structural damage detection using neural network with learning rate improvement". Comput. Struct., 83(25-26), 2150-2161. https://doi.org/10.1016/j.compstruc.2005.02.029.
- Fernandes, M.M.H., Coelho, A.P., Silva, M.F.D., Bertonha, R.S., Queiroz, R.F.D., Furlani, C.E.A. and Fernandes, C. (2020), "Estimation of soil penetration resistance with standardized moisture using modeling by artificial neural networks", Catena, 189, 104505, https://doi.org/10.1016/j.catena.2020.104505.
- Hemmat Esfe, M., Bahiraei, M., Hajmohammad, M.H. and Afrand, M. (2017), "Rheological characteristics of MgO/oil nanolubricants: Experimental study and neural network modeling", Int. Commun. Heat Mass Transfer, 86 245-252, https://doi.org/10.1016/j.icheatmasstransfer.2017.05.017.
- Huang, J., Yuan, T., Peng, L., Yu, J. and Ding, Z. (2015), "Model test on dynamic characteristics of invert and foundation soils of high-speed railway tunnel", Earthq. Eng. Eng. Vib., 14(3), 549-559. https://doi.org/10.1007/s11803-015-0044-z.
- Huang, Z., Pitilakis, K., Tsinidis, G., Argyroudis, S. and Zhang, D. (2020), "Seismic vulnerability of circular tunnels in soft soil deposits: The case of Shanghai metropolitan system", Tunn. Undergr. Sp. Tech., 98, 103341. https://doi.org/10.1016/j.tust.2020.103341.
- Hwang, J., Kim, C., Chung, C. and Kim, M. (2006), "Viscous fluid characteristics of liquefied soils and behavior of piles subjected to flow of liquefied soils", Soil Dyn. Earthq. Eng., 26(2), 313-323. https://doi.org/10.1016/j.soildyn.2005.02.020.
- Jeong, S.W. (2013), "Determining the viscosity and yield surface of marine sediments using modified Bingham models", Geosci. J., 17(3), 241-247. https://doi.org/10.1007/s12303-013-0038-7.
- Jossic, L. and Magnin, A. (2001), "Drag and stability of objects in a yield stress fluid", AICHE J., 47(12), 2666-2672. https://doi.org/10.1002/aic.690471206.
- Karimi, H. and Yousefi, F. (2012). "Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in nanofluids". Fluid Phase Equilibr., 336, 79-83. https://doi.org/10.1016/j.fluid.2012.08.019.
- Kheirbek-Saoud, S. and Fleureau, J. (2012), "Liquefaction and post-liquefaction behaviour of a soft natural clayey soil", Geomech. Eng., 4(2), 121-134, 10.12989/gae.2012.4.2.121.
- Kumar, S.S., Krishna, A.M. and Dey, A. (2018), "Dynamic properties and liquefaction behaviour of cohesive soil in northeast India under staged cyclic loading", J. Rock Mech. Geotech. Eng., 10(5), 958-967. https://doi.org/10.1016/j.jrmge.2018.04.004.
- Liu, J., Wang, T. and Tian, Y. (2010), "Experimental study of the dynamic properties of cement- and lime-modified clay soils subjected to freeze-thaw cycles", Cold Reg. Sci. Technol., 61(1), 29-33. https://doi.org/10.1016/j.coldregions.2010.01.002.
- Liu, X. (2016), Methods and Applications of Longitudinal Data Analysis, Academic Press, Oxford, England, U.K.
- Maier, H.R. and Dandy, G.C. (2000), "Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications", Environ. Modell. Softw., 15(1), 101-124. https://doi.org/10.1016/S1364-8152(99)00007-9.
- Moayedi, H., Gor, M., Lyu, Z. and Bui, D.T. (2020), "Herding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficient", Measurement, 152 107389. https://doi.org/10.1016/j.measurement.2019.107389.
- Mojid, M.A., Hossain, A.B.M.Z. and Ashraf, M.A. (2019), "Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties", Environ. Pollut., 255(2). https://doi.org/10.1016/j.envpol.2019.113355.
- Moss, R.E.S. and Crosariol, V.A. (2013), "Scale model shake table testing of an underground tunnel cross section in soft clay", Earthq. Spectra, 29(4), 1413-1440. https://doi.org/10.1193/070611EQS162M.
- Nazari, A., Rajeev, P. and Sanjayan, J.G. (2015), "Offshore pipeline performance evaluation by different artificial neural networks approaches", Measurement, 76 117-128. https://doi.org/10.1016/j.measurement.2015.08.035.
- Omari, M.A., Almagableh, A., Sevostianov, I., Ashhab, M.S. and Yaseen, A.B. (2020), "Modeling of the viscoelastic properties of thermoset vinyl ester nanocomposite using artificial neural network", Int. J. Eng. Sci., 150, 103242. https://doi.org/10.1016/j.ijengsci.2020.103242.
- Rahimi, M., Hajialyani, M., Beigzadeh, R. and Alsairafi, A.A. (2015), "Application of artificial neural network and genetic algorithm approaches for prediction of flow characteristic in serpentine microchannels", Chem. Eng. Res. Des., 98, 147-156. https://doi.org/10.1016/j.cherd.2015.05.005.
- Sartori, M.A. and Antsaklis, P.J. (1991), "A simple method to derive bounds on the size and to train multilayer neural networks", IEEE T. Neural Networ., 2 (4), 467-471. https://doi.org/10.1109/72.88168.
- Sheela, K.G. and Deepa, S.N. (2013), "Review on methods to fix number of hidden neurons in neural networks", Math. Probl. Eng. https://doi.org/10.1155/2013/425740.
- Shih, J.Y., Thompson, D.J. and Zervos, A. (2017), "The influence of soil nonlinear properties on the track/ground vibration induced by trains running on soft ground", Transport. Geotech., 11, 1-16. https://doi.org/10.1016/j.trgeo.2017.03.001.
- Tang, Y., Cui, Z., Zhang, X. and Zhao, S. (2008), "Dynamic response and pore pressure model of the saturated soft clay around the tunnel under vibration loading of Shanghai subway", Eng. Geol., 98(3), 126-132. https://doi.org/10.1016/j.enggeo.2008.01.014.
- Xu, Q., Ou, X., Au, F.T.K., Lou, P. and Xiao, Z. (2016), "Effects of track irregularities on environmental vibration caused by underground railway", Eur. J. Mech. A Solid, 59, 280-293. https://doi.org/10.1016/j.euromechsol.2016.04.005.
- Yang, W., Tan, S.K., Wang, H. and Yu, G. (2014), "Rheological properties of bed sediments subjected to shear and vibration loads", J. Waterw. Port Coast, 140(1), 109-113. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000211.
- Yang, Y.B. and Hung, H.H. (2008), "Soil vibrations caused by underground moving trains", J. Geotech. Geoenviron., 134(11), 1633-1644. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:11(1633).
- Yuan, H.C., Xiong, F.L. and Huai, X.Y. (2003), "A method for estimating the number of hidden neurons in feed-forward neural networks based on information entropy", Comput. Electron. Agr., 40(1-3), 57-64. https://doi.org/ 10.1016/S0168-1699(03)00011-5.
- Zaji, A.H., Bonakdari, H., Khameneh, H.Z. and Khodashenas, S. R. (2020), "Application of optimized artificial and radial basis neural networks by using modified genetic algorithm on discharge coefficient prediction of modified labyrinth side weir with two and four cycles", Measurement, 152, 107291. https://doi.org/10.1016/j.measurement.2019.107291.
- Zhang, N., Zou, H., Zhang, L., Puppala, A.J., Liu, S. and Cai, G. (2020), "A unified soil thermal conductivity model based on artificial neural network", Int. J. Therm. Sci., 155, 106414. https://doi.org/10.1016/j.ijthermalsci.2020.106414.
- Zhang, Z.Z., Ma, X.M. and Yang, Y.X., (2004), "Bounds on the number of hidden neurons in three-layer binary neural networks (vol 16, pg 995, 2003)", Neural Networks, 17(3), 465-465. https://doi.org/10.1016/j.neunet.2004.01.001.
- Zhongxun, Z., Deshun, Y., Chunyu, B. and Chao, Z. (2019), "Influence of sand content on the flow characteristics of soft soil under cyclic and high-frequency vibration", Earthq. Eng. Eng. Vib., 18(3), 487-496. https://doi.org/10.1007/s11803-019-0516-7.
- Zhu, Q., Jin, Y., Shang, X. and Chen, T. (2019), "A 1D model considering the combined effect of strain-rate and temperature for soft soil", Geomech. Eng., 18(2), 133-140. https://doi.org/10.12989/gae.2019.18.2.133.