참고문헌
- Abdelrahman, G.E, Duttine, A. and Tatsuoka, F. (2008), "Interface friction properties of EPS geofoam blocks from direct shear tests", Proceedings of the Research Symposium on Characterization and Behavior of Interfaces, Atlanta, U.S.A., September.
- Abdelrahman, G.E. and Elragi, A.F. (2006), "Behavior improvement of footings on soft clay utilizing geofoam", Proceedings of the 10th Arab Structural Engineering Conference, Kuwait, November.
- AbdelSalam, S.S. and Azzam, S.A. (2016), "Reduction of lateral pressures on retaining walls using geofoam inclusion", Geosynth. Int., 23(6), 395-407. https://doi.org/10.1680/jgein.16.00005.
- AbdelSalam, S.S., Jama, R.A. and Salah, M.A. (2019), "EPS inclusion to reduce vertical stresses on shallow tunnels", Geosynth. Int., 26(2), 121-135. https://doi.org/10.1680/jgein.18.00042.
- Akay, O. (2016), "Slope stabilisation using EPS block geofoam with internal drainage system", Geosynth. Int., 23(1), 9-22. https://doi.org/10.1680/jgein.15.00028.
- Akay, O., Ozer, A.T., Fox, G.A., Bartlett, S.F. and Arellano, D. (2013), "Behavior of sandy slopes remediated by EPS-block geofoam under seepage flow", Geotext. Geomembranes, 37, 81-98. https://doi.org/10.1016/j.geotexmem.2013.02.005.
- Al-Naddaf, M., Han, J., Xu, C. and Rahmaninezhad, S.M. (2019) "Effect of geofoam on vertical stress distribution on buried structures subjected to static and cyclic footing loads", J. Pipeline Syst. Eng. Pract., 10(1), 04018027. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000355.
- Al-Refeai, T.O. (1991), "Behavior of granular soils reinforced with discrete randomly oriented inclusions", Geotext. Geomembranes, 10(4), 319-333. https://doi.org/10.1016/0266-1144(91)90009-L.
- Arabani, M. and Haghsheno, H. (2020), "The effect of polymeric fibers on the mechanical properties of cement-stabilized clay soils in Northern Iran", Int. J. Geotech. Eng., 14(5), 557-568. https://doi.org/10.1080/19386362.2019.1658057.
- Arellano, D., Stark, T.D., Horvath, J.S. and Leshchinsky, D. (2011), "Guidelines for geofoam applications in slope stability projects", Preliminary Draft Final Report, NCHRP Project No. 24-11 (02), Transportation Research Board of the National Academies.
- Arellano, D., Tatum, J.B., Stark, T.D., Horvath, J.S. and Leshchinsky, D. (2010), "Framework for design guideline for expanded polystyrene block geofoam in slope stabilization and repair", Transport. Rese. Rec., 2170(1), 100-108. https://doi.org/10.3141/2170-12.
- Arenicz, R.M. and Chowdhury, R.N. (1988), "Laboratory investigation of earth walls simultaneously reinforced by strips and random reinforcement", Geotech. Test. J., 11(4), 241-247. https://doi.org/10.1520/GTJ10654J.
- Arvin, M.R., Abbasi, M. and Khalvati Fahliani, H. (2021), "Shear behavior of geocell-geofoam composite", Geotext. Geomembranes, 49, 188-195. https://doi.org/10.1016/j.geotexmem.2020.09.012.
- Atmatzidis, D.K., Missirlis, E.G. and Theodorakopoulos, E.B. (2001), "Shear resistance on EPS geofoam block surfaces", Proceedings of the 3rd Annual Conference on EPS Geofoam, Patras, Greece.
- Aytekin, M. (1997), "Numerical modeling of EPS geofoam used with swelling soil", Geotext. Geomembranes, 15(1-3),133-146. https://doi.org/10.1016/S0266-1144(97)00010-1.
- Barrett, J.C. and Valsangkar, A.J. (2009), "Effectiveness of connectors in geofoam block construction", Geotext. Geomembranes, 27(3), 211-216. https://doi.org/10.1016/j.geotexmem.2008.11.010.
- Bartlett, S.F. and Lawton, E.C. (2008), "Evaluating the seismic stability and performance of freestanding geofoam embankment", Proceedings of the 6th National Seismic Conference on Bridges and Highways, Charleston, South Carolina, U.S.A., July.
- Bathurst, R.J., Keshavarz, A., Zarnani, S. and Take, W.A. (2007), "A simple displacement model for response analysis of EPS geofoam seismic buffers", Soil Dyn. Earthq. Eng., 27(4), 344-353. https://doi.org/10.1016/j.soildyn.2006.07.004.
- Beju, Y.Z. and Mandal, J.N. (2017), "Expanded polystyrene (EPS) geofoam: Preliminary characteristic evaluation", Procedia Eng., 189, 239-246. https://doi.org/10.1016/j.proeng.2017.05.038.
- Choi, SG., Wang, K. and Chu, J. (2016), "Properties of biocemented, fiber reinforced sand", Construct. Build. Mater., 120, 623-629. https://doi.org/10.1016/j.conbuildmat.2016.05.124.
- Consoli, N.C., Casagrande, M.D.T. and Coop, M.R. (2007a) "Performance of a fibre-reinforced sand at large shear strains", Geotechnique, 57(9), 751-756. https://doi.org/10.1680/geot.2007.57.9.751.
- Consoli, N.C., Heineck, K.S., Casagrande, M.D.T. and Coop, M.R. (2007b), "Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress paths", J. Geotech. Geoenviron. Eng., 133(11), 1466-1469. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1466).
- Consoli, N.C., Prietto, P.D. and Ulbrich, L.A. (1998), "Influence of fiber and cement addition on behavior of sandy soil", J. Geotech. Geoenviron. Eng.,124(12), 1211-1214. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1211).
- Cristelo, N., Cunha, V.M., Gomes, A.T., Araujo, N., Miranda, T. and de Lurdes Lopes, M. (2017), "Influence of fibre reinforcement on the post-cracking behaviour of a cement-stabilised sandy-clay subjected to indirect tensile stress", Construct. Build. Mater., 138, 163-173. https://doi.org/10.1016/j.conbuildmat.2017.02.010.
- Dabiri, R. and Notash, N.H. (2020), "Evaluation of geofoam effects on seismic response in cantilever retaining wall", Geotech. Geol. Eng., 38(2), 2097-2116. https://doi.org/10.1007/s10706-019-01151-1.
- Diab, A.A., Najjar, S.S., Sadek, S., Taha, H., Jaffal, H. and Alahmad, M. (2018), "Effect of compaction method on the undrained strength of fiber-reinforced clay", Soils Found., 58(2), 462-480. https://doi.org/10.1016/j.sandf.2018.02.013.
- Diambra, A. and Ibraim, E. (2015), "Fibre-reinforced sand: interaction at the fibre and grain scale", Geotechnique, 65(4), 296-308. https://doi.org/10.1680/geot.14.P.206.
- Diambra, A., Russell, A.R., Ibraim, E. and Muir Wood, D. (2007) "Determination of fibre orientation distribution in reinforced sands", Geotechnique, 57(7), 623-628. https://doi.org/10.1680/geot.2007.57.7.623.
- Duskov, M. and Scarpas, A. (1997) "Three-dimensional finite element analysis of flexible pavements with an (open joint in the) EPS sub-base", Geotext. Geomembranes, 15(1-3), 29-38. https://doi.org/10.1016/S0266-1144(97)00005-8.
- Elragi, A.F. (2000), "Selected engineering properties and applications of EPS geofoam", Corpus ID: 55700044.
- Ertugrul, O.L. and Trandafir, A.C. (2014), "Seismic earth pressures on flexible cantilever retaining walls with deformable inclusions", J. Rock Mech. Geotech. Eng., 6(5), 417-427. https://doi.org/10.1016/j.jrmge.2014.07.004.
- Esveld, C., Markine, V. and Duskov, M. (2001), "Feasibility of EPS as a lightweight sub-base material in railway track structures", Proceedings of the 3rd International Conference on EPS Geofoam, Salt Lake City, Utah, December.
- Gao, H., Liu, J. and Liu, H. (2011), "Geotechnical properties of EPS composite soil", Int. J. Geotech. Eng., 5(1), 69-77. https://doi.org/10.3328/IJGE.2011.05.01.69-77.
- Gendy, M.E., Araby, I.E., Kamash, W.E., Sallam, E. and Labban, A.E. (2018), "Effect of using EPS geofoam on deformation behavior of square footings on clay subjected to static and dynamic loads: experimental study", Proceedings of the 5th International Conference on Geofoam Blocks in Construction Applications, Kyrenia, Cyprus, May.
- Ghotbi Siabil, S.M.A., Moghaddas Tafreshi, S.N., Dawson, A.R. and Parvizi Omran, M. (2019), "Behavior of expanded polystyrene (EPS) blocks under cyclic pavement foundation loading", Geosynth. Int., 26(1), 1-25. https://doi.org/10.1680/jgein.18.00033.
- Gong, Y., He, Y., Han, C., Shen, Y. and Tan, G. (2019), "Stability analysis of soil embankment slope reinforced with polypropylene fiber under freeze-thaw cycles", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2019/5725708.
- Gullu, H. and Fedakar, H.I. (2017), "Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber", Geomech. Eng., 13(1), 25-41. http://dx.doi.org/10.12989/gae.2017.13.1.02.
- Hamidi, A. and Hooresfand, M. (2013), "Effect of fiber reinforcement on triaxial shear behavior of cement treated sand", Geotext. Geomembranes, 36, 1-9. https://doi.org/10.1016/j.geotexmem.2012.10.005.
- Heineck, K.S., Coop, M.R. and Consoli, N.C. (2005), "Effect of microreinforcement of soils from very small to large shear strains", J. Geotech. Geoenviron. Eng., 131(8), 1024-1033. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1024).
- Horvath, J.S. (1994), "Expanded polystyrene (EPS) geofoam: An introduction to material behavior", Geotext. Geomembranes, 13(4), 263-280. https://doi.org/10.1016/0266-1144(94)90048-5.
- Huang, X. and Negussey, D. (2011), "EPS geofoam design parameters for pavement structures", Proceedings of the Geo-Frontiers 2011: Advances in Geotechnical Engineering, Dallas, Texas, U.S.A., March.
- Ikizler, S.B., Aytekin, M. and Nas, E. (2008), "Laboratory study of expanded polystyrene (EPS) geofoam used with expansive soils", Geotext. Geomembranes, 26(2), 189-195. https://doi.org/10.1016/j.geotexmem.2007.05.005.
- Johari, A. and Kalantari, A.R. (2016), "Probabilistic analysis of slope stability of embankment reinforced with discrete fiber", Proceeding of the 5th International Conference on Geotechnical Engineering and Soil Mechanics, Tehran, Iran, November.
- Jutkofsky, W.S., Teh Sung, J. and Negussey, D. (2000), "Stabilization of embankment slope with geofoam", Transport. Res. Rec., 1736(1), 94-102. https://doi.org/10.3141/1736-12.
- Kaur, A. and Kumar, A. (2016), "Behavior of eccentrically inclined loaded footing resting on fiber reinforced soil", Geomech. Eng., 10(2), 155-174. http://doi.org/10.12989/gae.2016.10.2.155.
- Khalaj, O., Siabil, S.M., Azizian, M., Tafreshi, S.N., Masek, B., Kepka, M., Kavalir, T., Krizek, M. and Jirkova, H. (2020), "Experimental and numerical investigation of expanded polystyrene (EPS) geofoam samples under monotonic loading", Geomech. Eng., 22(6), 475-88. http://doi.org/10.12989/gae.2020.22.6.475.
- Khan, M.I. and Meguid, M.A. (2018), "Experimental investigation of the shear behavior of EPS geofoam", Int. J. Geosynth. Ground Eng., 4(2), 12. https://doi.org/10.1007/s40891-018-0129-7.
- Kim, H., Witthoeft, A.F. and Kim, D. (2018), "Numerical study of earth pressure reduction on rigid walls using EPS geofoam inclusions", Geosynth. Int., 25(2), 180-199. https://doi.org/10.1680/jgein.18.00001.
- Kong, Y., Zhou, A., Shen, F. and Yao, Y. (2019), "Stress-dilatancy relationship for fiber-reinforced sand and its modeling", Acta Geotechnica, 14(6), 1871-1881. https://doi.org/10.1007/s11440-019-00834-6.
- Krishnaswamy, N.R. and Isaac, N.T. (1994), "Liquefaction potential of reinforced sand", Geotext. Geomembranes, 13(1), 23-41. https://doi.org/10.1016/0266-1144(94)90055-8.
- Leo, C.J., Kumruzzaman, M., Wong, H. and Yin, J.H. (2008), "Behavior of EPS geofoam in true triaxial compression tests" Geotext. Geomembranes, 26(5), 175-180. https://doi.org/doi:10.1016/j.geotexmem.2007.10.005.
- Li, H., Senetakis, K. and Coop, M.R. (2019), "Medium-strain dynamic behavior of fiber-reinforced sand subjected to stress anisotropy", Soil Dyn. Earthq. Eng., 126, 105764. https://doi.org/10.1016/j.soildyn.2019.105764.
- Lin, S., Lei, X., Meng, Q. and Xu, J. (2019), "Properties of biocemented, basalt-fibre-reinforced calcareous sand" Proc. Inst. Civ. Eng. Ground Improv., 1-9. https://doi.org/10.1680/jgrim.19.00023.
- Liu, J., Wang, Y., Kanungo, D.P., Wei, J., Bai, Y., Li, D., Song, Z. and Lu, Y. (2019), "Study on the brittleness characteristics of sand reinforced with polypropylene fiber and polyurethane organic polymer", Fiber. Polym., 20(3), 620-632. https://doi.org/10.1007/s12221-019-8779-1.
- Maher, M.H. and Gray, D.H. (1990), "Static response of sands reinforced with randomly distributed fibers", J. Geotech. Eng., 116(11), 1661-1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661).
- Maher, M.H. and Ho, Y.C. (1994), "Mechanical properties of kaolinite/fiber soil composite", J. Geotech. Eng., 120(8), 1381-1393. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1381).
- Maheshwari, B.K., Singh, H.P. and Saran, S. (2012), "Effects of reinforcement on liquefaction resistance of Solani sand", J. Geotech. Geoenviron. Eng., 138(7), 831-840. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000645.
- Meguid, M.A., Hussein, M.G., Ahmed, M.R., Omeman, Z. and Whalen, J. (2017), "Investigation of soil-geosynthetic-structure interaction associated with induced trench installation", Geotext. Geomembranes, 45(4), 320-330. https://doi.org/10.1016/j.geotexmem.2017.04.004.
- Michalowski, R.L. and Cermak, J. (2003), "Triaxial compression of sand reinforced with fibers", J. Geotech. Geoenviron. Eng., 129(2), 125-136. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(125).
- Negussey, D. (2007), "Design parameters for EPS geofoam", Soils Found., 47(1), 161-170. https://doi.org/10.3208/sandf.47.161.
- Negussey, D., Anasthas, N. and Srirajan, S. (2001), "Interface friction properties of EPS geofoam", Proceedings of the EPS Geofoam, 3rd International Conference, Salt Lake City, Utah, U.S.A., December.
- Negussey, D. and Srirajan, S. (2001), "Slope stabilization using EPS geofoam", Proceedings of the EPS Geofoam 3rd International Conference. Salt Lake City, Utah, U.S.A., December.
- Newman, M.P., Bartlett, S.F. and Lawton, E.C. (2010), "Numerical modeling of geofoam embankments", J. Geotech. Geoenviron. Eng., 136(2), 290-298. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000203.
- Ojima, K., Okazawa, Y., Matunawa, I., Kitada, I., Tutiya, M., Yamaji, H. and Kojima, K. (1996), "Use of EPS in the foundations of an emergency staircase of an overpass", Proceedings of the International Symposium on EPS Construction Method, Tokyo, Japan, October.
- Ossa, A. and Romo, M.P. (2009), "Micro-and macro-mechanical study of compressive behavior of expanded polystyrene geofoam", Geosynth., Int., 16(5), 327-338. https://doi.org/10.1680/gein.2009.16.5.327.
- Ozer, A.T. and Akay, O. (2016), "Interface shear strength characteristics of interlocked EPS-block geofoam", J. Mater. Civ. Eng., 28(4), 04015156. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001418.
- Padade, A.H. and Mandal, J.N. (2012a), "Behavior of expanded polystyrene (EPS) geofoam under triaxial loading conditions", Elect. J. Geotech. Eng., 17, 2542-2553.
- Padade, A.H. and Mandal, J.N. (2012b), "Direct shear test on expanded polystyrene (EPS) geofoam", Proceedings of the 5th European Geosynthetic Congress, Valencia, Spain, September.
- Padade, A.H. and Mandal, J.N. (2014), "Interface strength behavior of expanded polystyrene EPS geofoam", Int. J. Geotech. Eng., 8(1), 66-71. https://doi.org/10.1179/1938636213Z.00000000056.
- Park, T. and Tan, S.A. (2005), "Enhanced performance of reinforced soil walls by the inclusion of short fiber", Geotext. Geomembranes, 23(4), 348-361. https://doi.org/10.1016/j.geotexmem.2004.12.002.
- Ple, O. and Le, T.N.H. (2012), "Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay", Geotext. Geomembranes, 32, 111-116. https://doi.org/10.1016/j.geotexmem.2011.11.004.
- Puppala, A.J., Ruttanaporamakul, P. and Congress, S.S.C. (2019), "Design and construction of lightweight EPS geofoam embedded geomaterial embankment system for control of settlements", Geotext. Geomembranes, 47(3), 295-305. https://doi.org/10.1016/j.geotexmem.2019.01.015.
- Ruttanaporamakul, P., Puppala, A.J., Pedarla, A., Bheemasetti, T.V. and Williammee, R.S. (2016), "Settlement mitigation of a distressed embankment in Texas by utilization of lightweight EPS geofoam material", Proceedings of the Transportation Research Board 95th Annual Meeting, Washington, D.C., U.S.A., January.
- Sheeley, M. and Negussey, D. (2000), "An investigation of geofoam interface strength behavior", Proceedings of the Soft Ground Technology Conference, Noordwijkerhout, The Netherlands, May.
- Sonmezer, Y.B. (2019), "Investigation of the liquefaction potential of fiber-reinforced sand", Geomech. Eng., 18(5), 503-513. http://doi.org/10.12989/gae.2019.18.5.503.
- Sridhar, R. and Prathap Kumar, M.T. (2018), "Experimental investigation of load settlement behavior of coir mat and coir fiber reinforced sand", J. Nat. Fibers, 15(3), 452-463. https://doi.org/10.1080/15440478.2017.1349017.
- Srivastava, D.K., Srivastava, A., Misra, A.K. and Sahu, V. (2019), "Sustainability assessment of EPS-geofoam in road construction: A case study", Int. J. Sustain. Eng., 12(5), 341-348. https://doi.org/10.1080/19397038.2018.1508319.
- Stark, T.D. and Mann, G. (2006), "Landslide stabilization using geofoam", Proceedings of 8th International Conference on Geosynthetics, Yokohama, Japan, September.
- Tang, C., Shi, B., Gao, W., Chen, F. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Geotext. Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
- Vaslestad, J., Bartlett, S.F., Aaboe, R., Burkart, H., Ahmed, T. and Arellano, D. (2019), "Bridge foundations supported by EPS geofoam embankments on soft soil", Proceedings of the 5th International Conference on Geofoam Blocks in Construction Applications, Kyrenia, Cyprus, May.
- Wan, L.L., Zou, W.L., Wang, X.Q. and Han, Z. (2018), "Comparison of three inclusions in reducing lateral swelling pressure of expansive soils", Geosynth. Int., 25(5), 481-493. https://doi.org/10.1680/jgein.18.00012.
- Xenaki, V.C. (2001), "Sand-EPS interface behavior: A conceptual framework and experimental results", Proceedings of the 3rd Internatioanl Conference on EPS Geofoam, Salt Lake City, Utah, U.S.A., December.
- Ye, B., Cheng, Z.R., Liu, C., Zhang, Y.D. and Lu, P, (2017), "Liquefaction resistance of sand reinforced with randomly distributed polypropylene fibres", Geosynth. Int., 24(6), 625-636. https://doi.org/10.1680/jgein.17.00029.
- Yetimoglu, T. and Salbas, O. (2003), "A study on shear strength of sands reinforced with randomly distributed discrete fibers", Geotext. Geomembranes, 21, 103-110. https://doi.org/10.1016/S0266-1144(03)00003-7.
- Zarnani, S. and Bathurst, R.J. (2009), "Influence of constitutive model on numerical simulation of EPS seismic buffer shaking table tests", Geotext. Geomembranes, 27(4), 308-312. https://doi.org/10.1016/j.geotexmem.2008.11.008.
- Zarnani, S., Bathurst, R.J. and Gaskin, A. (2005), "Experimental investigation of geofoam seismic buffer using a shaking table", Proceedings of the North American Geosynthetics Society (NAGS)/GRI19 conference, Las Vegas, U.S.A., December.
- Zhang, X. and Russell, A.R. (2020), "Assessing liquefaction resistance of fiber-reinforced sand using a new pore pressure ratio", J. Geotech. Geoenviron. Eng., 146(1), 04019125. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002197.