DOI QR코드

DOI QR Code

Direct tensile strength measurement of granite by the universal tensile testing machine

  • Haeri, Hadi (State Key Laboratory for Deep GeoMechanics and Underground Engineering) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Marji, Mohammad Fdatehi (Mine Exploitation Engineering Department, Faculty of Mining and Metallurgy, Institution of Engineering, Yazd University) ;
  • Yavari, Mohammad Davood (Department of mining Engineering, Bafgh Branch, Islamic Azad University) ;
  • Zahedi-Khameneh, Amin (Department of Civil Engineering, Malard Branch, Islamic Azad University)
  • Received : 2020.01.01
  • Accepted : 2020.12.14
  • Published : 2021.04.25

Abstract

The direct tensile strength of a typical hard rock like granite is measured by a novel apparatus known as compression-to-tensile load transfer (CTLT) device. The rock specimen is prepared in form of a slab containing a central hole and placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, some typical hard rock specimens of granite are specially prepared and tested in the laboratory to measure their direct tensile strengths. Then, a new load converting device implemented in the universal tensile testing machine is used to cause the rock specimen to be subjected to a direct tensile loading during the test. The compressive load was applied to the transferring device at the rate of 0.02 MPa/s. Numerical modeling of the tested specimens were accomplished using the discrete element method (DEM) and the higher order displacement discontinuity method (HODDM). The tensile failure of granite rock mainly occurs along the horizontal axis. The experimental results were in a good accordance with DEM results and HODDM outputs.

Keywords

References

  1. Abrishambaf, A., Barros, J.A. and Cunha, V.M. (2015), "Tensile stress-crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests", Cement Concrete Compos., 57, 153-165. https://doi.org/10.1016/j.cemconcomp.2014.12.010
  2. Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 66-78. https://doi.org/10.12989/sem.2016.59.3.579
  3. Albegmprli, H.M., Gulsan, M.E. and Cevik, A. (2019), "Comprehensive experimental investigation on mechanical behavior for types of reinforced concrete Haunched beam", Adv. Concrete Constr., Int. J., 7(1), 39-50. https://doi.org/10.12989/acc.2019.7.1.039
  4. Alhussainy, F., Hasan, H.A., Rogic, S., Sheikh, M.N. and Hadi, M.N. (2016), "Direct tensile testing of self-compacting concrete", Constr. Build. Mater., 112, 903-906. https://doi.org/10.1016/j.conbuildmat.2016.02.215
  5. Aliabadian, Z., Zhao, G.F. and Russell, A.R. (2019), "Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test", Int. J. Rock Mech. Mining Sci., 122, 104073. https://doi.org/10.1016/j.ijrmms.2019.104073
  6. ASTM D2936-08 (2008), Standard test method for splitting tensile strength of intact rock core specimens, Annual Book of ASTM Standards, Vol. 4, ASTM, West Conshohocken, PA, USA.
  7. ASTM D3967-16 (2016), Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, Annual Book of ASTM Standards, Vol. 4, ASTM, West Conshohocken, PA, USA.
  8. Bieniawski, Z.T. and Hawkes, I. (1978), "Suggested method for determining tensile strength of rock materials", Int. J. Rock Mech. Mining Sci. & Geomechanics Abstracts, 15, 99-103. https://doi.org/10.1016/0148-9062(78)91677-7
  9. Chen, W.F. and Trumbauer, B.E. (1972), "Double-punch test and tensile strength of concrete", J. Mater. ASTM, 7(2), 148-154.
  10. Crouch, S.L. (1976), "Analysis of stresses and displacements around underground excavations: an application of the displacement discontinuity method", University of Minnesota Geomechanics Report, Minneapolis, MN, USA.
  11. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  12. Denneman, E., Kearsley, E.P. and Visser, A.T. (2011), "Splitting tensile test for fibre re-inforced concrete", Mater. Struct., 44(8), 1441-1449. https://doi.org/10.1617/s11527-011-9709-x
  13. Erarslan, N. and Williams, D.J. (2012), "Experimental, numerical and analytical studies on tensile strength of rocks", Int. J. Rock Mech. Min. Sci., 49, 21-30. https://doi.org/10.1016/j.ijrmms.2011.11.007
  14. Forti, T.L., Forti, N., Santos, F.L. and Carnio, M.A. (2019), "The continuous-discontinuous Galerkin method applied to crack propagation", Comput. Concrete, Int. J., 23(4), 235-243. https://doi.org/10.12989/cac.2019.23.4.235
  15. Ghaffar, A., Chaudhry, M.A. and Ali, M.K. (2005), "A new approach for measurement of tensile strength of concrete", J. Res. Sci., Bahauddin Zakariya Univ., Multan, Pakistan, 16(1), 1-9.
  16. Gorski, B., Conlon, B. and Ljunggren, B. (2007), "Determination of the direct and indirect tensile strength on cores from borehole KFM01D", CANMET-MMSL, Mining and Mineral Sciences Laboratories, Natural Resources Canada, pp. 7-76.
  17. Haeri, H., Khaloo, A. and Marji, M.F. (2015), "Fracture analyses of different pre-holed concrete specimens under compression", Acta mechanica sinica, 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  18. Hannant, D.J. (1972), "The tensile strength of concrete: a review paper", Struct. Eng., 50(7), 253-257.
  19. Hosseini_Nasab, H. and Fatehi Marji, M. (2007), "A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting", J. Mech. Mater. Struct., 2(3), 439-458. https://doi.org/10.2140/jomms.2007.2.439
  20. Hu, S., Xu, A., Hu, X. and Yin, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, Int. J., 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.337
  21. Itasca Consulting Group Inc. (2003), PFC2D (particle flow code in 2dimensions) version 3.0, 41(8), 1329-1364.
  22. Khan, M.I. (2012), "Direct tensile strength measurement of concrete", Appl. Mech. Mater., 117, 9-14. https://doi.org/10.4028/www.scientific.net/AMM.117-119.9
  23. Kim, J. and Taha, M.R. (2014), "Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens", Adv. Civ. Eng., 1-8. https://doi.org/10.1155/2014/156926
  24. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 82, 421-431. https://doi.org/10.1016/j.measurement.2017.04.002
  25. Liao, Z.Y., Zhu, J.B. and Tang, C.A. (2019), "Numerical investigation of rock tensile strength determined by direct tension, Brazilian and three-point bending tests", Int. J. Rock Mech. Mining Sci., 115, 21-32. https://doi.org/10.1016/j.ijrmms.2019.01.007
  26. Liu, Y.I., Dai, F., Xu, N., Zhao, T. and Feng, P. (2018), "Experimental and numerical investigation on the tensile fatigue properties of rocks using the cyclic flattened Brazilian disc method", Soil Dyn. Earthq. Eng., 105, 68-82. https://doi.org/10.1016/j.soildyn.2017.11.025
  27. Marji, M.F. (1997), "Modelling of cracks in rock fragmentation with a higher order displacement discontinuity method", Ph.D. Thesis in Mining Engineering (Rock Mechanics), 1(1), 167.
  28. Marji, M.F. (2013), "On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method", Eng. Fract. Mech., 98, 365-382. https://doi.org/10.1016/j.engfracmech.2012.11.015
  29. Marji, M.F., Hosseini-Nasab, H. and Kohsary, A.H. (2007), "A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis", JP J. Solids Struct., 1(1), 61-91.
  30. Martin, C.D. (2014), "The direct and Brazilian tensile strength of rock in the light of size effect and bimodularity", American Rock Mechanics Association, 48th U.S. Rock Mechanics/Geomechanics Symposium, June, Minneapolis, MN, USA.
  31. Maruvanchery, V. and Kim, E. (2019), "Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone", Geomech. Eng., Int. J., 17(1), 57-67. https://doi.org/10.12989/gae.2019.17.1.057
  32. Mosaberpanah, M.A. and Eren, O. (2016), "Statistical flexural toughness modeling of ultra-high performance concrete using response surface method", Comput. Concrete, Int. J., 17(4), 33-39. https://doi.org/10.12989/cac.2016.17.4.477
  33. Omar, H., Ahmad, J., Nahazanan, H., Mohammed, T.A. and Yusoff, Z.M. (2018), "Measurement and simulation of diametrical and axial indirect tensile tests for weak rocks", Measurement, 127, 299-307. https://doi.org/10.1016/j.measurement.2018.05.067
  34. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech., Int. J., 52(4), 167-181. https://doi.org/10.1007/978-94-007-4566-7_51
  35. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  36. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, Int. J., 11(2), 55-65. https://doi.org/10.12989/cac.2013.11.2.149
  37. Sanford, R.J. (2003), Principles of Fracture Mechanics, Pearson Education, hIC., Upper Saddle River, NJ, USA, pp. 1-15.
  38. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, Int. J., 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  39. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2015), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., Int. J., 3(4), 269-282. https://doi.org/10.12989/acc.2015.3.4.269
  40. Sarfarazi, V., Haeri, H. and Shemirani, A.B. (2017), "Direct and indirect methods for determination of mode I fracture toughness using PFC2D", Comput. Concrete, Int. J., 20(1), 1-10. https://doi.org/10.12989/cac.2017.20.1.039
  41. Shang, J., Duan, K., Gui, Y., Handley, K. and Zhao, Z. (2018), "Numerical investigation of the direct tensile behaviour of laminated and transversely isotropic rocks containing incipient bedding planes with different strengths", Comput. Geotech., 104, 373-388. https://doi.org/10.1016/j.compgeo.2017.11.007
  42. Shou, K.J. and Crouch, S.L. (1995), "A higher order displacement discontinuity method for analysis of crack problems", Int. J. Rock Mech. Min. Sci. Geomech. Abstract, 32, 49-55. https://doi.org/10.1016/0148-9062(94)00016-V
  43. Shuraim, A.B., Aslam, F., Hussain, R.R. and Alhozaimy, A.M. (2016), "Analysis of punching shear in high strength RC panelsexperiments, comparison with codes and FEM results", Comput. Concrete, Int. J., 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
  44. Silva, R.V., De Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  45. Sun, W., Du, H., Zhou, F. and Shao, J. (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., Int. J., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323
  46. Swaddiwudhipong, S., Lu, H.R. and Wee, T.H. (2003), "Direct tension test and tensile strain capacity of concrete at early age", Cem. Concr. Res., 33, 2077-2084. https://doi.org/10.1016/S0008-8846(03)00231-X
  47. Tran, K.Q., Satomi, T. and Takahashi, H. (2019), "Tensile behaviors of natural fiber and cement reinforced soil subjected to direct tensile test", J. Build. Eng., 24, 100748. https://doi.org/10.1016/j.jobe.2019.100748
  48. Wang, Q.Z., Jia, X.M., Kou, S.Q., Zhang, Z.X. and Lindqvist, P.A. (2004), "The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results", Int. J. Rock Mech. Min. Sci., 41, 245-253. https://doi.org/10.1016/S1365-1609(03)00093-5
  49. Wei, X.X. and Chau, K.T. (2013), "Three dimensional analytical solution for finite circular cylinders subjected to indirect tensile test", Int. J. Solids Struct., 50, 2395-2406. https://doi.org/10.1016/j.ijsolstr.2013.03.026
  50. Whittaker, B.N., Singh, R.N. and Sun, G. (1992), "Rock fracture mechanics. Principles, design and applications", Developments in Geotechnical Engineering, 71. Elsevier, Amsterdam, Netherlands.
  51. Xie, N.X. and Liu, W.Y. (1989), "Determining tensile properties of mass concrete by direct tensile test", ACI Mater. J., 86(3), 214-219.
  52. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., Int. J., 57(6), https://doi.org/10.12989/sem.2016.57.6.1143
  53. Zain, M.F.M., Mahmud, H.B., Ilham, A. and Faizal, M. (2002), "Prediction of splitting tensile strength of high-performance concrete", Cem. Concr. Res., 32, 1251-1257. https://doi.org/10.1016/S0008-8846(02)00768-8
  54. Zhang, Z.X. (2002), "An empirical relation between mode I fracture toughness and the tensile strength of rock", Int. J. Rock Mech. Mining Sci. & Geomech. Abstracts, 93, 401-406. https://doi.org/10.1016/S1365-1609(02)00032-1
  55. Zhang, D., Hou, S., Bian, J. and He, L. (2016), "Investigation of the micro-cracking behavior of asphalt mixtures in the indirect tensile test", Eng. Fract. Mech., 163, 416-425. https://doi.org/10.1016/j.engfracmech.2016.05.020
  56. Zheng, W., Kwan, A.K.H. and Lee, P.K.K. (2001), "Direct tension test of concrete", ACI Mater. J., 98(1), 63-71.
  57. Zhou, F.P. (1988), "Some aspects of tensile fracture behaviour and structural response of cementitious materials", Report TVBM-1008, Division of Building Materials, Lund Institute of Technology.