References
- Abedini, M. and Zhang, C. (2020), "Performance assessment of concrete and steel material models in ls-dyna for enhanced numerical simulation, a state of the art review", Arch. Computat. Methods Eng., 1-22. https://doi.org/10.1007/s11831-020-09483-5
- Abedini, M., Mutalib, A.A., Zhang, C., Mehrmashhadi, J., Raman, S.N., Alipour, R., Momeni, T. and Mussa, M.H. (2020), "Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads", Frontiers Struct. Civil Eng., 14(2), 532-553. https://doi.org/10.1007/s11709-020-0604-9
- Abedinpourshotorban, H., Shamsuddin, S.M., Beheshti, Z. and Jawawi, D.N. (2016), "Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm", Swarm Evolution. Computat., 26, 8-22. https://doi.org/10.1016/j.swevo.2015.07.002
- Abellan Garcia, J., Fernandez Gomez, J. and Torres Castellanos, N. (2020), "Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks", Eur. J. Environ. Civil Eng., 1-25. https://doi.org/10.1080/19648189.2020.1762749
- Adeli, H. (2001), "Neural networks in civil engineering: 1989- 2000", Comput.-Aided Civil Infrastruct. Eng., 16(2), 126-142. https://doi.org/10.1111/0885-9507.00219
- Amlashi, A.T., Abdollahi, S.M., Goodarzi, S. and Ghanizadeh, A.R. (2019), "Soft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concrete", J. Cleaner Product., 230, 1197-1216. https://doi.org/10.1016/j.jclepro.2019.05.168
- Anderson, D. and McNeill, G. (1992), "Artificial neural networks technology", Kaman Sci. Corp., 258(6), 1-83.
- Aydogmus, H.Y., Erdal, H.I., Karakurt, O., Namli, E., Turkan, Y.S. and Erdal, H. (2015), "A comparative assessment of bagging ensemble models for modeling concrete slump flow", Comput. Concrete, Int. J., 16(5), 741-757. https://doi.org/10.12989/cac.2015.16.5.741
- Azimi-Pour, M., Eskandari-Naddaf, H. and Pakzad, A. (2020), "Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete", Constr. Build. Mater., 230, 117021. https://doi.org/10.1016/j.conbuildmat.2019.117021
- Bao, J., Li, S., Zhang, P., Ding, X., Xue, S., Cui, Y. and Zhao, T. (2020), "Influence of the incorporation of recycled coarse aggregate on water absorption and chloride penetration into concrete", Constr. Build. Mater., 239, 117845. https://doi.org/10.1016/j.conbuildmat.2019.117845
- Behforouz, B., Memarzadeh, P., Eftekhar, M. and Fathi, F. (2020), "Regression and ANN models for durability and mechanical characteristics of waste ceramic powder high performance sustainable concrete", Comput. Concrete, Int. J., 25(2), 119-132. https://doi.org/10.12989/cac.2020.25.2.119
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201
- Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019a), "Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00850-w
- Bui, D.T., Moayedi, H., Kalantar, B., Osouli, A., Pradhan, B., Nguyen, H. and Rashid, A.S.A. (2019b), "A novel swarm intelligence-Harris hawks optimization for spatial assessment of landslide susceptibility", Sensors, 19(16), 3590. https://doi.org/10.3390/s19163590
- Cao, B., Zhao, J., Lv, Z., Gu, Y., Yang, P. and Halgamuge, S.K. (2020a), "Multiobjective evolution of fuzzy rough neural network via distributed parallelism for stock prediction", IEEE Transact. Fuzzy Syst., 28(5), 939-952. https://doi.org/10.1109/TFUZZ.2020.2972207
- Cao, Y., Li, Y., Zhang, G., Jermsittiparsert, K. and Nasseri, M. (2020b), "An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm", Energy Reports, 6, 530-542. https://doi.org/10.1016/j.egyr.2020.02.035
- Chandwani, V., Agrawal, V. and Nagar, R. (2015), "Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks", Expert Syst. Applicat., 42(2), 885-893. https://doi.org/10.1016/j.eswa.2014.08.048
- Chao, L., Zhang, K., Li, Z., Zhu, Y., Wang, J. and Yu, Z. (2018), "Geographically weighted regression based methods for merging satellite and gauge precipitation", J. Hydrol., 558, 275-289. https://doi.org/10.1016/j.jhydrol.2018.01.042
- Chao, M., Kai, C. and Zhiwei, Z. (2020), "Research on tobacco foreign body detection device based on machine vision", Transact. Inst. Measure. Control, 42(15), 2857-2871. https://doi.org/10.1177/0142331220929816
- Chen, H.L., Wang, G., Ma, C., Cai, Z.N., Liu, W.B. and Wang, S.J. (2016), "An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease", Neurocomputing, 184, 131-144. https://doi.org/10.1016/j.neucom.2015.07.138
- Chen, Y., He, L., Guan, Y., Lu, H. and Li, J. (2017), "Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales", Energy Convers. Manage., 134, 382-398. https://doi.org/10.1016/j.enconman.2016.12.019
- Chen, Y., He, L., Li, J. and Zhang, S. (2018), "Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty", Comput. Chem. Eng., 109, 216-235. https://doi.org/10.1016/j.compchemeng.2017.11.014
- Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q. and Cai, K. (2020a), "A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources", Agricult. Water Manage., 240, 106303. https://doi.org/10.1016/j.agwat.2020.106303
- Chen, H., Fan, D.L., Fang, L., Huang, W., Huang, J., Cao, C., Yang, L., He, Y. and Zeng, L. (2020b), "Particle swarm optimization algorithm with mutation operator for particle filter noise reduction in mechanical fault diagnosis", Int. J. Pattern Recogn. Artif. Intell., 34(10), 2058012. https://doi.org/10.1142/S0218001420580124
- Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z. and Gandomi, A.H. (2020c), "Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies", Future Generat. Comput. Syst., 111, 175-198. https://doi.org/10.1016/j.future.2020.04.008
- Chen, Y., Li, J., Lu, H. and Yan, P. (2021), "Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains", J. Cleaner Product., 278, 123209. https://doi.org/10.1016/j.jclepro.2020.123209
- Cheng, X., He, L., Lu, H., Chen, Y. and Ren, L. (2016), "Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia", J. Hydrol., 540, 412-422. https://doi.org/10.1016/j.jhydrol.2016.06.041
- Dao, D.V., Trinh, S.H., Ly, H.B. and Pham, B.T. (2019), "Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: Novel hybrid artificial intelligence approaches", Appl. Sci., 9(6), 1113. https://doi.org/10.3390/app9061113
- David, S. (1993), The Water Cycle, (John Yates, Illus), Thomson Learning, New York, USA.
- Deng, Y., Zhang, T., Sharma, B.K. and Nie, H. (2019), "Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system", Sci. Total Environ., 646, 1140-1154. https://doi.org/10.1016/j.scitotenv.2018.07.369
- Douma, O.B., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "Prediction of properties of self-compacting concrete containing fly ash using artificial neural network", Neural Comput. Applicat., 28(1), 707-718. https://doi.org/10.1007/s00521-016-2368-7
- Eskandar, H., Sadollah, A., Bahreininejad, A. and Hamdi, M. (2012), "Water cycle algorithm-A novel metaheuristic optimization method for solving constrained engineering optimization problems", Comput. Struct., 110, 151-166. https://doi.org/10.1016/j.compstruc.2012.07.010
- Feng, S., Lu, H., Tian, P., Xue, Y., Lu, J., Tang, M. and Feng, W. (2020a), "Analysis of microplastics in a remote region of the Tibetan Plateau: Implications for natural environmental response to human activities", Sci. Total Environ., 739, 140087. https://doi.org/10.1016/j.scitotenv.2020.140087
- Feng, W., Lu, H., Yao, T. and Yu, Q. (2020b), "Drought characteristics and its elevation dependence in the Qinghai-Tibet plateau during the last half-century", Scientific Reports, 10(1), 14323. https://doi.org/10.1038/s41598-020-71295-1
- Foong, L.K., Moayedi, H. and Lyu, Z. (2020), "Computational modification of neural systems using a novel stochastic search scheme, namely evaporation rate-based water cycle algorithm: an application in geotechnical issues", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01000-3
- Fu, X., Fortino, G., Pace, P., Aloi, G. and Li, W. (2020a), "Environment-fusion multipath routing protocol for wireless sensor networks", Inform. Fusion, 53, 4-19. https://doi.org/10.1016/j.inffus.2019.06.001
- Fu, X., Pace, P., Aloi, G., Yang, L. and Fortino, G. (2020b), "Topology optimization against cascading failures on wireless sensor networks using a memetic algorithm", Comput. Networks, 177, 107327. https://doi.org/10.1016/j.comnet.2020.107327
- Ghaemi, A., Rezaie-Balf, M., Adamowski, J., Kisi, O. and Quilty, J. (2019), "On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction", Agricult. Forest Meteorol., 278, 107647. https://doi.org/10.1016/j.agrformet.2019.107647
- Gholipour, G., Zhang, C. and Mousavi, A.A. (2020), "Numerical analysis of axially loaded RC columns subjected to the combination of impact and blast loads", Eng. Struct., 219, 110924. https://doi.org/10.1016/j.engstruct.2020.110924
- Hammoudi, A., Moussaceb, K., Belebchouche, C. and Dahmoune, F. (2019), "Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates", Constr. Build. Mater., 209, 425-436. https://doi.org/10.1016/j.conbuildmat.2019.03.119
- Han, X., Zhang, D., Yan, J., Zhao, S. and Liu, J. (2020), "Process development of flue gas desulphurization wastewater treatment in coal-fired power plants towards zero liquid discharge: Energetic, economic and environmental analyses", J. Cleaner Product., 261, 121144. https://doi.org/10.1016/j.jclepro.2020.121144
- He, L., Chen, Y. and Li, J. (2018a), "A three-level framework for balancing the tradeoffs among the energy, water, and air-emission implications within the life-cycle shale gas supply chains", Resourc. Conserv. Recycl., 133, 206-228. https://doi.org/10.1016/j.resconrec.2018.02.015
- He, L., Chen, Y., Zhao, H., Tian, P., Xue, Y. and Chen, L. (2018b), "Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input", Sci. Total Environ., 627, 1585-1601. https://doi.org/10.1016/j.scitotenv.2018.02.004
- He, L., Shen, J. and Zhang, Y. (2018c), "Ecological vulnerability assessment for ecological conservation and environmental management", J. Environ. Manage., 206, 1115-1125. https://doi.org/10.1016/j.jenvman.2017.11.059
- He, L., Shao, F. and Ren, L. (2020), "Sustainability appraisal of desired contaminated groundwater remediation strategies: an information-entropy-based stochastic multi-criteria preference model", Environ. Develop. Sustain., 23(2), 1759-1779. https://doi.org/10.1007/s10668-020-00650-z
- Hecht-Nielsen, R. (1992), Neural Networks for Perception, Elsevier, pp. 65-93.
- Heidari, A.A., Abbaspour, R.A. and Jordehi, A.R. (2017), "An efficient chaotic water cycle algorithm for optimization tasks", Neural Computing and Applications, 28(1), 57-85. https://doi.org/10.1007/s00521-015-2037-2
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Hu, L., Hong, G., Ma, J., Wang, X. and Chen, H. (2015), "An efficient machine learning approach for diagnosis of paraquat-poisoned patients", Comput. Biol. Med., 59, 116-124. https://doi.org/10.1016/j.compbiomed.2015.02.003
- Hu, X., Chong, H.Y. and Wang, X. (2019), "Sustainability perceptions of off-site manufacturing stakeholders in Australia", J. Cleaner Product., 227, 346-354. https://doi.org/10.1016/j.jclepro.2019.03.258
- Jia, L., Liu, B., Zhao, Y., Chen, W., Mou, D., Fu, J., Wang, Y., Xin, W. and Zhao, L. (2020), "Structure design of MoS2@Mo2C on nitrogen-doped carbon for enhanced alkaline hydrogen evolution reaction", J. Mater. Sci., 55(34), 16197-16210. https://doi.org/10.1007/s10853-020-05107-2
- Keshtegar, B., Heddam, S., Sebbar, A., Zhu, S.P. and Trung, N.T. (2019), "SVR-RSM: a hybrid heuristic method for modeling monthly pan evaporation", Environ. Sci. Pollut. Res., 26(35), 35807-35826. https://doi.org/10.1007/s11356-019-06596-8
- Kisi, O. and Heddam, S. (2019), "Evaporation modelling by heuristic regression approaches using only temperature data", Hydrol. Sci. J., 64(6), 653-672. https://doi.org/10.1080/02626667.2019.1599487
- Lei, Z., Hao, S., Yang, J. and Dan, X. (2020), "Study on solid waste pyrolysis coke catalyst for catalytic cracking of coal tar", Int. J. Hydrog. Energy, 45(38), 19280-19290. https://doi.org/10.1016/j.ijhydene.2020.05.075
- Li, C., Hou, L., Sharma, B.Y., Li, H., Chen, C., Li, Y., Zhao, X., Huang, H., Cai, Z. and Chen, H. (2018), "Developing a new intelligent system for the diagnosis of tuberculous pleural effusion", Comput. Methods Programs Biomed., 153, 211-225. https://doi.org/10.1016/j.cmpb.2017.10.022
- Li, T., Xu, M., Zhu, C., Yang, R., Wang, Z. and Guan, Z. (2019), "A deep learning approach for multi-frame in-loop filter of HEVC", IEEE Transact. Image Process., 28(11), 5663-5678. https://doi.org/10.1109/TIP.2019.2921877
- Li, X., Zhang, R., Zhang, X., Zhu, P. and Yao, T. (2020a), "Silver-Catalyzed Decarboxylative Allylation of Difluoroarylacetic Acids with Allyl Sulfones in Water", Chemistry - An Asian J., 15(7), 1175-1179. https://doi.org/10.1002/asia.202000059
- Li, Z., Zhou, H., Hu, D. and Zhang, C. (2020b), "Yield criterion for rocklike geomaterials based on strain energy and CMP model", Int. J. Geomech., 20(3), 04020013. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001593
- Liu, Z., Shao, J., Xu, W., Chen, H. and Zhang, Y. (2014), "An extreme learning machine approach for slope stability evaluation and prediction", Natural Hazards, 73(2), 787-804. https://doi.org/10.1007/s11069-014-1106-7
- Liu, J., Wu, C., Wu, G. and Wang, X. (2015), "A novel differential search algorithm and applications for structure design", Appl. Mathe. Computat., 268, 246-269. https://doi.org/10.1016/j.amc.2015.06.036
- Liu, D., Wang, S., Huang, D., Deng, G., Zeng, F. and Chen, H. (2016a), "Medical image classification using spatial adjacent histogram based on adaptive local binary patterns", Comput. Biol. Med., 72, 185-200. https://doi.org/10.1016/j.compbiomed.2016.03.010
- Liu, S., Chan, F.T. and Ran, W. (2016b), "Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes", Expert Syst. Applicat., 55, 37-47. https://doi.org/10.1016/j.eswa.2016.01.059
- Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. and Wang, Y. (2018), "Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil", Chemosphere, 194, 495-503. https://doi.org/10.1016/j.chemosphere.2017.12.025
- Liu, E., Lv, L., Yi, Y. and Xie, P. (2019), "Research on the steady operation optimization model of natural gas pipeline considering the combined operation of air coolers and compressors", IEEE Access, 7, 83251-83265. https://doi.org/10.1109/ACCESS.2019.2924515
- Liu, C., Huang, X., Wu, Y.Y., Deng, X., Liu, J., Zheng, Z. and Hui, D. (2020a), "Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide", Nanotechnol. Rev., 9(1), 155-169. https://doi.org/10.1515/ntrev-2020-0014
- Liu, J., Liu, Y. and Wang, X. (2020b), "An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou", Environ. Sci. Pollut. Res., 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5
- Liu, Y., Yang, C. and Sun, Q. (2020c), "Thresholds based image extraction schemes in big data environment in intelligent traffic management", IEEE Transact. Intell. Transport. Syst., 1-9. https://doi.org/10.1109/TITS.2020.2994386
- Long, Q., Wu, C. and Wang, X. (2015), "A system of nonsmooth equations solver based upon subgradient method", Appl. Mathe. Computat., 251, 284-299. https://doi.org/10.1016/j.amc.2014.11.064
- Lu, H., Tian, P. and He, L. (2019), "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions", Renew. Sustain. Energy Rev., 112, 788-796. https://doi.org/10.1016/j.rser.2019.06.013
- Luo, Q., Wen, C., Qiao, S. and Zhou, Y. (2016), "Dual-system water cycle algorithm for constrained engineering optimization problems", Proceedings of International Conference on Intelligent Computing, pp. 730-741.
- Lv, Z. and Qiao, L. (2020), "Deep belief network and linear perceptron based cognitive computing for collaborative robots", Appl. Soft Comput., 92, 106300. https://doi.org/10.1016/j.asoc.2020.106300
- Lyu, Z., Chai, J., Xu, Z., Qin, Y. and Cao, J. (2019), "A comprehensive review on reasons for tailings dam failures based on case history", Adv. Civil Eng., 4159306. https://doi.org/10.1155/2019/4159306
- Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., Int. J., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241
- McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Mathe. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259
- Meesaraganda, L.P., Sarkar, N. and Tarafder, N. (2020), Soft Computing for Problem Solving, Springer, pp. 119-134.
- Mirjalili, S. (2015), "The ant lion optimizer", Adv. Eng. Software, 83, 80-98. https://doi.org/10.1016/j.advengsoft.2015.01.010
- Moayedi, H., Kalantar, B., Foong, L.K., Tien Bui, D. and Motevalli, A. (2019a), "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci., 9(20), 4340. https://doi.org/10.3390/app9204340
- Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019b), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
- More, J.J. (1978), Numerical Analysis, Springer, pp. 105-116.
- Mou, B., Li, X., Bai, Y. and Wang, L. (2019a), "Shear behavior of panel zones in steel beam-to-column connections with unequal depth of outer annular stiffener", J. Struct. Eng., 145(2), 04018247. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002256
- Mou, B., Li, X., Qiao, Q., He, B. and Wu, M. (2019b), "Seismic behaviour of the corner joints of a frame under biaxial cyclic loading", Eng. Struct., 196, 109316. https://doi.org/10.1016/j.engstruct.2019.109316
- Mou, B., Zhao, F., Qiao, Q., Wang, L., Li, H., He, B. and Hao, Z. (2019c), "Flexural behavior of beam to column joints with or without an overlying concrete slab", Eng. Struct, 199, 109616. https://doi.org/10.1016/j.engstruct.2019.109616
- Nguyen, C.H., Tran, L.H. and Ho, K.N. (2020), CIGOS 2019, Innovation for Sustainable Infrastructure, Springer, pp. 1161-1166.
- Pang, R., Xu, B., Kong, X. and Zou, D. (2018), "Seismic fragility for high CFRDs based on deformation and damage index through incremental dynamic analysis", Soil Dyn. Earthq. Eng., 104, 432-436. https://doi.org/10.1016/j.soildyn.2017.11.017
- Pang, R., Xu, B., Zhou, Y., Zhang, X. and Wang, X. (2020), "Fragility analysis of high CFRDs subjected to mainshock-aftershock sequences based on plastic failure", Eng. Struct., 206, 110152. https://doi.org/10.1016/j.engstruct.2019.110152
- Pham, A.D., Hoang, N.D. and Nguyen, Q.T. (2016), "Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression", J. Comput. Civil Eng., 30(3), 06015002. https://doi.org/10.1061/%28ASCE%29CP.1943-5487.0000506
- Piotrowski, A.P., Osuch, M., Napiorkowski, M.J., Rowinski, P.M. and Napiorkowski, J.J. (2014), "Comparing large number of metaheuristics for artificial neural networks training to predict water temperature in a natural river", Comput. Geosci., 64, 136-151. https://doi.org/10.1016/j.cageo.2013.12.013
- Qian, J., Feng, S., Li, Y., Tao, T., Han, J., Chen, Q. and Zuo, C. (2020a), "Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry", Optics Letters, 45(7), 1842-1845. https://doi.org/10.1364/OL.388994
- Qian, J., Feng, S., Tao, T., Hu, Y., Li, Y., Chen, Q. and Zuo, C. (2020b), "Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement", APL Photonics, 5(4), 046105. https://doi.org/10.1063/5.0003217
- Qiu, T., Shi, X., Wang, J., Li, Y., Qu, S., Cheng, Q., Cui, T. and Sui, S. (2019), "Deep learning: a rapid and efficient route to automatic metasurface design", Adv. Sci., 6(12), 1900128. https://doi.org/10.1002/advs.201900128
- Quan, Q., Hao, Z., Xifeng, H. and Jingchun, L. (2020), "Research on water temperature prediction based on improved support vector regression", Neural Comput. Applicat., 1-10. https://doi.org/10.1007/s00521-020-04836-4
- Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput.-Aided Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015
- Rao, C.S., Pavan, K.K. and Rao, A.A. (2013), "An automatic medical image segmentation using teaching learning based optimization", Proceedings of International Conference on Advances in Computer Science.
- Roy, D.K., Barzegar, R., Quilty, J. and Adamowski, J. (2020), "Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones", J. Hydrol., 591, 125509. https://doi.org/10.1016/j.jhydrol.2020.125509
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, Int. J., 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355
- Sadowski, L., Nikoo, M., Shariq, M., Joker, E. and Czarnecki, S. (2019), "The nature-inspired metaheuristic method for predicting the creep strain of green concrete containing ground granulated blast furnace slag", Materials, 12(2), 293. https://doi.org/10.3390/ma12020293
- Saha, S. and Rajasekaran, C. (2016), "Mechanical properties of recycled aggregate concrete produced with Portland Pozzolana Cement", Adv. Concrete Constr., Int. J., 4(1), 27-35. https://doi.org/10.12989/acc.2016.4.1.027
- Saremi, S., Mirjalili, S. and Lewis, A. (2017), "Grasshopper optimisation algorithm: theory and application", Adv. Eng. Software, 105, 30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004
- Shahmansouri, A.A., Yazdani, M., Ghanbari, S., Bengar, H.A., Jafari, A. and Ghatte, H.F. (2020), "Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite", J. Cleaner Product., 279, 123697. https://doi.org/10.1016/j.jclepro.2020.123697
- Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B. and Liu, D. (2016), "Evolving support vector machines using fruit fly optimization for medical data classification", Knowledge-Based Syst., 96, 61-75. https://doi.org/10.1016/j.knosys.2016.01.002
- Shi, K., Wang, J., Tang, Y. and Zhong, S. (2020a), "Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies", Fuzzy Sets Syst., 381, 1-25. https://doi.org/10.1016/j.fss.2018.11.017
- Shi, K., Wang, J., Zhong, S., Tang, Y. and Cheng, J. (2020b), "Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control", Fuzzy Sets Syst., 394, 40-64. https://doi.org/10.1016/j.fss.2019.09.001
- Shukla, A.K., Singh, P. and Vardhan, M. (2020), "An adaptive inertia weight teaching-learning-based optimization algorithm and its applications", Appl. Mathe. Modell., 77, 309-326. https://doi.org/10.1016/j.apm.2019.07.046
- Simon, D. (2008), "Biogeography-based optimization", IEEE Transact. Evolution. Computat., 12(6), 702-713. https://doi.org/10.1109/TEVC.2008.919004
- Singh, V., Gu, N. and Wang, X. (2011), "A theoretical framework of a BIM-based multi-disciplinary collaboration platform", Automat. Constr., 20(2), 134-144. https://doi.org/10.1016/j.autcon.2010.09.011
- Su, Z., Liu, E., Xu, Y., Xie, P., Shang, C. and Zhu, Q. (2019), "Flow field and noise characteristics of manifold in natural gas transportation station", Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles, 74, 70. https://doi.org/10.2516/ogst/2019038
- Sun, Y., Wang, J., Wu, J., Shi, W., Ji, D., Wang, X. and Zhao, X. (2020), "Constraints hindering the development of high-rise modular buildings", Appl. Sci., 10(20), 7159. https://doi.org/10.3390/app10207159
- Talebi, B. and Dehkordi, M.N. (2018), "Sensitive association rules hiding using electromagnetic field optimization algorithm", Expert Syst. Applicat., 114, 155-172. https://doi.org/10.1016/j.eswa.2018.07.031
- Tian, P., Lu, H., Feng, W., Guan, Y. and Xue, Y. (2020), "Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin", Catena, 187, 104340. https://doi.org/10.1016/j.catena.2019.104340
- Unlu, R. (2020), "An assessment of machine learning models for slump flow and examining redundant features", Comput. Concrete, Int. J., 25(6), 565-574. https://doi.org/10.12989/cac.2020.25.6.565
- Vakhshouri, B. and Nejadi, S. (2018), "Prediction of compressive strength of self-compacting concrete by ANFIS models", Neurocomputing, 280, 13-22. https://doi.org/10.1016/j.neucom.2017.09.099
- Wang, M. and Chen, H. (2020), "Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis", Appl. Soft Comput. J., 88, 105946. https://doi.org/10.1016/j.asoc.2019.105946
- Wang, S.J., Chen, H.L., Yan, W.J., Chen, Y.H. and Fu, X. (2014), "Face recognition and micro-expression recognition based on discriminant tensor subspace analysis plus extreme learning machine", Neural Processing Letters, 39(1), 25-43. https://doi.org/10.1007/s11063-013-9288-7
- Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H. and Tong, C. (2017), "Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses", Neurocomputing, 267, 69-84. https://doi.org/10.1016/j.neucom.2017.04.060
- Wang, S., Zhang, K., van Beek, L.P., Tian, X. and Bogaard, T.A. (2020a), "Physically-based landslide prediction over a large region: Scaling low-resolution hydrological model results for high-resolution slope stability assessment", Environ. Modell. Software, 124, 104607 https://doi.org/10.1016/j.envsoft.2019.104607
- Wang, Y., Yao, M., Ma, R., Yuan, Q., Yang, D., Cui, B., Ma, C., Liu, M. and Hu, D. (2020b), "Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage", J. Mater. Chem. A, 8(3), 884-917. https://doi.org/10.1039/C9TA11527G
- Wu, C., Wang, X., Chen, M. and Kim, M.J. (2019), "Differential received signal strength based RFID positioning for construction equipment tracking", Adv. Eng. Inform., 42, 100960. https://doi.org/10.1016/j.aei.2019.100960
- Wu, T., Xiong, L., Cheng, J. and Xie, X. (2020), "New results on stabilization analysis for fuzzy semi-Markov jump chaotic systems with state quantized sampled-data controller", Inform. Sci., 521, 231-250. https://doi.org/10.1016/j.ins.2020.02.051
- Xia, J., Chen, H., Li, Q., Zhou, M., Chen, L., Cai, Z., Fang, Y. and Zhou, H. (2017), "Ultrasound-based differentiation of malignant and benign thyroid Nodules: An extreme learning machine approach", Comput. Methods Programs Biomed., 147, 37-49. https://doi.org/10.1016/j.cmpb.2017.06.005
- Xiong, Q., Zhang, X., Wang, W.F. and Gu, Y. (2020), "A parallel algorithm framework for feature extraction of EEG signals on MPI", Computat. Mathe. Methods Med., 2020. https://doi.org/10.1155/2020/9812019
- Xu, X. and Chen, H.L. (2014), "Adaptive computational chemotaxis based on field in bacterial foraging optimization", Soft Comput., 18(4), 797-807. https://doi.org/10.1007/s00500-013-1089-4
- Xu, M., Li, T., Wang, Z., Deng, X., Yang, R. and Guan, Z. (2018), "Reducing complexity of HEVC: A deep learning approach", IEEE Transact. Image Process., 27(10), 5044-5059. https://doi.org/10.1109/TIP.2018.2847035
- Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S. and Zhang, X. (2019), "Enhanced Moth-flame optimizer with mutation strategy for global optimization", Inform. Sci., 492, 181-203. https://doi.org/10.1016/j.ins.2019.04.022
- Xu, B., Pang, R. and Zhou, Y. (2020a), "Verification of stochastic seismic analysis method and seismic performance evaluation based on multi-indices for high CFRDs", Eng. Geol, 264, 105412. https://doi.org/10.1016/j.enggeo.2019.105412
- Xu, M., Li, C., Zhang, S. and Le Callet, P. (2020b), "State-of-the-art in 360 video/image processing: Perception, assessment and compression", IEEE J. Select. Topics Signal Process., 14(1), 5-26. https://doi.org/10.1109/JSTSP.2020.2966864
- Yaman, M.A., Abd Elaty, M. and Taman, M. (2017), "Predicting the ingredients of self compacting concrete using artificial neural network", Alexandria Eng. J., 56(4), 523-532. https://doi.org/10.1016/j.aej.2017.04.007
- Yan, J., Pu, W., Zhou, S., Liu, H. and Bao, Z. (2020), "Collaborative detection and power allocation framework for target tracking in multiple radar system", Inform. Fusion, 55, 173-183. https://doi.org/10.1016/j.inffus.2019.08.010
- Yang, X.S. (2008), "Firefly algorithm", Nature-Inspired Metaheuristic Algorithms, 20, 79-90.
- Yang, L. and Chen, H. (2019), "Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network", Neural Comput. Applicat., 31(9), 4463-4478. https://doi.org/10.1007/s00521-018-3525-y
- Yang, M. and Sowmya, A. (2015), "An underwater color image quality evaluation metric", IEEE Transact. Image Process., 24(12), 6062-6071. https://doi.org/10.1109/TIP.2015.2491020
- Yang, S., Deng, B., Wang, J., Li, H., Lu, M., Che, Y., Wei, X. and Loparo, K.A. (2020a), "Scalable digital neuromorphic architecture for large-scale biophysically meaningful neural network with multi-compartment neurons", IEEE Transact. Neural Networks Learning Syst., 31(1), 148-162. https://doi.org/10.1109/TNNLS.2019.2899936
- Yang, W., Pudasainee, D., Gupta, R., Li, W., Wang, B. and Sun, L. (2020b), "An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: Sampling and measurement, formation, distribution, inorganic composition and influencing factors", Fuel Process. Technol., 106657. https://doi.org/10.1016/j.fuproc.2020.106657
- Yang, W., Zhao, Y., Wang, D., Wu, H., Lin, A. and He, L. (2020c), "Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin'anjiang river in Huangshan, China", Int. J. Environ. Res. Public Health, 17(8), 2942. https://doi.org/10.3390/ijerph17082942
- Yang, Y., Liu, J., Yao, J., Kou, J., Li, Z., Wu, T., Zhang, K., Zhang, L. and Sun, H (2020d), "Adsorption behaviors of shale oil in kerogen slit by molecular simulation", Chem. Eng. J., 387, 124054. https://doi.org/10.1016/j.cej.2020.124054
- Yeh, I.C. (2007), "Modeling slump flow of concrete using second-order regressions and artificial neural networks", Cement Concrete Compos., 29(6), 474-480. https://doi.org/10.1016/j.cemconcomp.2007.02.001
- Yeh, I.C. (2008), "Modeling slump of concrete with fly ash and superplasticizer", Comput. Concrete, Int. J., 5(6), 559-572. https://doi.org/10.12989/cac.2008.5.6.559
- Yeh, I.C. (2009), "Simulation of concrete slump using neural networks", Proceedings of the Institution of Civil Engineers-Construction Materials, 162(1), 11-18. https://doi.org/10.1680/coma.2009.162.1.11
- Yu, H., Shen, S., Qian, G. and Gong, X. (2020), "Packing theory and volumetrics-based aggregate gradation design method", J. Mater. Civil Eng., 32(6), 04020110. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003192
- Yue, H., Wang, H., Chen, H., Cai, K. and Jin, Y. (2020), "Automatic detection of feather defects using Lie group and fuzzy Fisher criterion for shuttlecock production", Mech. Syst. Signal Process., 141, 106690. https://doi.org/10.1016/j.ymssp.2020.106690
- Yurtkuran, A. and Kucukoglu, I. (2018), "Comparative study of physics-inspired meta-heuristic algorithms for the solar cell parameter identification problem", Proceedings of the 16th International Conference on Clean Energy (ICCE- 2018).
- Zakeri, E., Moezi, S.A., Bazargan-Lari, Y. and Zare, A. (2017), "Multi-tracker optimization algorithm: a general algorithm for solving engineering optimization problems", Iran. J. Sci. Technol. Transact. Mech. Eng., 41(4), 315-341. https://doi.org/10.1007/s40997-016-0066-9
- Zakeri, E., Moezi, S.A. and Eghtesad, M. (2019), "Optimal interval type-2 fuzzy fractional order super twisting algorithm: A second order sliding mode controller for fully-actuated and under-actuated nonlinear systems", ISA Transact., 85, 13-32. https://doi.org/10.1016/j.isatra.2018.10.013
- Zenggang, X., Zhiwen, T., Xiaowen, C., Xue-min, Z., Kaibin, Z. and Conghuan, Y. (2019), "Research on image retrieval algorithm based on combination of color and shape features", J. Signal Process. Syst., 1-8. https://doi.org/10.1007/s11265-019-01508-y
- Zhang, W. (2020), "Parameter adjustment strategy and experimental development of hydraulic system for wave energy power generation", Symmetry, 12(5), 711. https://doi.org/10.3390/sym12050711
- Zhang, J. and Liu, B. (2019), "A review on the recent developments of sequence-based protein feature extraction methods", Current Bioinform., 14(3), 190-199. https://doi.org/10.2174/1574893614666181212102749
- Zhang, C. and Wang, H. (2020), "Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification", Struct. Control Health Monitor., 27(6), e2543. https://doi.org/10.1002/stc.2543
- Zhang, C.W., Ou, J.P. and Zhang, J.Q. (2006), "Parameter optimization and analysis of a vehicle suspension system controlled by magnetorheological fluid dampers", Struct. Control Health Monitor., 13(5), 885-896. https://doi.org/10.1002/stc.63
- Zhang, B., Xu, D., Liu, Y., Li, F., Cai, J. and Du, L. (2016), "Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China", Agricul. Forest Meteorol., 216, 1-12. https://doi.org/10.1016/j.agrformet.2015.09.015
- Zhang, T., Wu, X., Fan, X., Tsang, D.C., Li, G. and Shen, Y. (2019), "Corn waste valorization to generate activated hydrochar to recover ammonium nitrogen from compost leachate by hydrothermal assisted pretreatment", J. Environ. Manage., 236, 108-117. https://doi.org/10.1016/j.jenvman.2019.01.018
- Zhang, C., Abedini, M. and Mehrmashhadi, J. (2020a), "Development of pressure-impulse models and residual capacity assessment of RC columns using high fidelity Arbitrary Lagrangian-Eulerian simulation", Eng. Struct., 224, 111219. https://doi.org/10.1016/j.engstruct.2020.111219
- Zhang, K., Ruben, G.B., Li, X., Li, Z., Yu, Z., Xia, J. and Dong, Z. (2020b), "A comprehensive assessment framework for quantifying climatic and anthropogenic contributions to streamflow changes: A case study in a typical semi-arid North China basin", Environ. Modell. Software, 128, 104704. https://doi.org/10.1016/j.envsoft.2020.104704
- Zhang, X., Jiang, R., Wang, T. and Wang, J. (2020c), "Recursive neural network for video deblurring", IEEE Transact. Circuits Syst. Video Technol., 1-1. https://doi.org/10.1109/TCSVT.2020.3035722
- Zhang, X., Wang, T., Wang, J., Tang, G. and Zhao, L. (2020d), "Pyramid Channel-based Feature Attention Network for image dehazing", Comput. Vision Image Understand., 197, 103003. https://doi.org/10.1016/j.cviu.2020.103003
- Zhang, Y., Liu, R., Wang, X., Chen, H. and Li, C. (2020e), "Boosted binary Harris hawks optimizer and feature selection", Eng. Comput. https://doi.org/10.1007/s00366-020-01028-5
- Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y. and Chen, H. (2014), "Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton", Appl. Soft Comput., 24, 585-596. https://doi.org/10.1016/j.asoc.2014.07.024
- Zhao, X., Li, D., Yang, B., Chen, H., Yang, X., Yu, C. and Liu, S. (2015), "A two-stage feature selection method with its application", Comput. Electric. Eng., 47, 114-125. https://doi.org/10.1016/j.compeleceng.2015.08.011
- Zhao, X., Zhang, X., Cai, Z., Tian, X., Wang, X., Huang, Y., Chen, H. and Hu, L. (2019), "Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients", Computat. Biol. Chem., 78, 481-490. https://doi.org/10.1016/j.compbiolchem.2018.11.017
- Zhou, G., Moayedi, H. and Foong, L.K. (2020), "Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-00981-5
- Zhu, Q. (2020), "Research on road traffic situation awareness system based on image big data", IEEE Intell. Syst., 35(1), 18-26. https://doi.org/10.1109/MIS.2019.2942836.
- Zhu, J., Shi, Q., Wu, P., Sheng, Z. and Wang, X. (2018), "Complexity analysis of prefabrication contractors' dynamic price competition in mega projects with different competition strategies", Complexity, 2018. https://doi.org/10.1155/2018/5928235
- Zhu, G., Wang, S., Sun, L., Ge, W. and Zhang, X. (2020a), "Output feedback adaptive dynamic surface sliding-mode control for quadrotor UAVs with tracking error constraints", Complexity, 2020. https://doi.org/10.1155/2020/8537198
- Zhu, L., Kong, L. and Zhang, C. (2020b), "Numerical study on hysteretic behaviour of horizontal-connection and energy-dissipation structures developed for prefabricated shear walls", Appl. Sci., 10(4), 1240. https://doi.org/10.3390/app10041240