DOI QR코드

DOI QR Code

Thermal postbuckling of shear deformable multiscale hybrid composite beams

  • Eyvazian, Arameh (Structural Vibration Control Group, Qingdao University of Technology) ;
  • Zhang, Chunwei (Structural Vibration Control Group, Qingdao University of Technology) ;
  • Alkhedher, Mohammad (Mechanical Engineering Department, Abu Dhabi University) ;
  • Demiral, Murat (College of Engineering and Technology, American University of the Middle East) ;
  • Khan, Afrasyab (Institude of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University) ;
  • Sebaey, Tamer A. (Engineering Management Department, College of Engineering, Prince Sultan University)
  • Received : 2020.06.11
  • Accepted : 2020.11.25
  • Published : 2021.04.25

Abstract

This research is deal with thermal buckling and post-buckling of carbon nanotube/fiber/polymer composite beams. The beam is considered to be under uniform temperature rise. Firstly, the effective material properties of a two phase nanocomposite consisting of CNT and polymer are extracted. Then, the modified Chamis rule is utilized to obtain the equivalent thermo-mechanical properties of multiscale hybrid composite (MHC). Based on the first order shear deformation theory, Von-Karman type of geometrically nonlinear strain-deformation equations and also the virtual work rule, the equilibrium equations of a three phace composite beam are derived. Bifurcation buckling and also the thermal post-buckling is analysed using the generalized differential quadrature technique. In the thermal buckling phenomena, a linear eigenvalue problem is solved; however, due to the nonlinearity, the thermal postbuckling study is performed using an iterative displacement control strategy. After validation study, several novel results demonstrate the influences of length-to-thickness ratio, agglomeration of applied CNTs and fibers in the composite media and number and orientation of layers on the critical temperature and displacement-loading path.

Keywords

Acknowledgement

This research is financially supported by the Ministry of Science and Technology of China (Grant No. 2019YFE0112400, 2018YFC1504303), the Key Research and Development Program of Liaoning Province (Grant No. 2017231010), the Taishan Scholar Priority Discipline Talent Group program funded by the Shandong Province, and the first-class discipline project funded by the Education Department of Shandong Province.

References

  1. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., Int. J., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267
  2. Affdl, J.H. and Kardos, J.L. (1976), "The Halpin-Tsai equations: a review", Polym. Eng. Sci., 16(5), 344-352 https://doi.org/10.1002/pen.760160512
  3. Alamusi, A., Hu, N., Qiu, J., Li, Y., Chang, C., Atobe, S., Fukunaga, H., Liu, Y., Ning, H., Wu, L. and Li, J. (2013), "Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites", Nanoscale Res. Lett., 8(1), 15-15. https://doi.org/10.1186/1556-276X-8-15
  4. Bekyarova, E., Thostenson, E.T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H.T., Chou, T.W., Itkis, M.E. and Haddon, R.C. (2007a), "Multiscale carbon nanotube- carbon fiber reinforcement for advanced epoxy composites", Langmuir, 23(7), 3970-3974. https://doi.org/10.1021/la062743p
  5. Bekyarova, E., Thostenson, E.T., Yu, A., Itkis, M.E., Fakhrutdinov, D., Chou, T.W. and Haddon, R.C. (2007b), "Functionalized single-walled carbon nanotubes for carbon fiber-epoxy composites", J. Phys. Chem. C, 111(48), 17865-17871. https://doi.org/10.1021/jp071329a
  6. Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Sebaey, T.A., Eyvazian, A. and Zain, A.M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., Int. J., 37(2), 253-258. https://doi.org/10.12989/scs.2020.37.2.253
  7. Chamis, C.C. (1983), "Simplified composite micromechanics equations for hygral, thermal and mechanical properties".
  8. Chamis, C.C. and Sendeckyj, G.P. (1968), "Critique on theories predicting thermoelastic properties of fibrous composites", J. Compos. Mater., 2(3), 332-358. https://doi.org/10.1177/002199836800200305
  9. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  10. Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2020), "Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory", Mech. Based. Des. Struc., pp. 1-27. https://doi.org/10.1080/15397734.2019.1692666
  11. Dat, N.D., Quan, T.Q. and Duc, N.D. (2019), "Nonlinear thermal vibration of carbon nanotube polymer composite elliptical cylindrical shells", Int. J. Mech. Mater. Des., 1-20. https://doi.org/ 10.1007/s10999-019-09464-y
  12. Dat, N.D., Quan, T.Q., Mahesh, V. and Duc, N.D. (2020a), "Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment", Int. J. Mech. Sci., 186, p. 105906. https://doi.org/10.1016/j.ijmecsci.2020.105906
  13. Dat, N.D., Khoa, N.D., Nguyen, P.D. and Duc, N.D. (2020b), "An analytical solution for nonlinear dynamic response and vibration of FG-CNT reinforced nanocomposite elliptical cylindrical shells resting on elastic foundations", ZAMM-Z ANGEW MATH ME, 100(1), p. e201800238. https://dx.doi.org/10.1002/zamm.201800238
  14. Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. http://dx.doi.org/10.12989/scs.2019.31.3.243
  15. Duc, N.D. (2014), "Nonlinear static and dynamic stability of functionally graded plates and shells", Vietnam National University Press, Hanoi, Vietnam.
  16. Duc, N.D., Hadavinia, H., Quan, T.Q. and Khoa, N.D. (2019a), "Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment", Eur. J. Mech. A Solids., 75, 355-366. https://doi.org/10.1016/j.euromechsol.2019.01.024
  17. Duc, N.D., Nguyen, P.D., Cuong, N.H., Van Sy, N. and Khoa, N.D. (2019b), "An analytical approach on nonlinear mechanical and thermal post-buckling of nanocomposite double-curved shallow shells reinforced by carbon nanotubes", Proc. Inst. Mech. Eng., Part C, 233(11), 3888-3903. https://doi.org/10.1177/0954406218802921
  18. Duong, T.M., Vu, T.T.A., Pham, D.N. and Nguyen, D.D. (2020), "Nonlinear post-buckling of CNTs reinforced sandwich-structured composite annular spherical shells", Int. J. Struct. Stab. Dyn., 20(2). https://dx.doi.org/10.1142/S0219455420500182
  19. Ebrahimi, F. and Dabbagh, A. (2019), "On thermo-mechanical vibration analysis of multi-scale hybrid composite beams", J. Vib. Control, 25(4), 933-945. https://doi.org/10.1177/1077546318806800
  20. Eslami, M.R. (2018), "Buckling and Postbuckling of Beams, Plates, and Shells". Cham, Switzerland: Springer International Publishing.
  21. Eyvazian, A., Musharavati, F., Tarlochan, F., Pasharavesh, A., Rajak, D.K., Husain, M.B. and Tran, T.N. (2020a), "Free vibration of FG-GPLRC conical panel on elastic foundation", Struct. Eng. Mech., Int. J., 75(1), 1-18. https://doi.org/10.12989/sem.2020.75.1.001
  22. Eyvazian, A., Musharavati, F., Talebizadehsardari, P. and Sebaey, T.A. (2020b), "Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation", Steel Compos. Struct., Int. J., 36(6), 711-727. https://doi.org/10.12989/scs.2020.36.6.711
  23. Eyvazian, A., Shahsavari, D. and Karami, B. (2020c), "On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load", Int. J. Eng. Sci., 154, p.103339. https://doi.org/10.1016/j.ijengsci.2020.103339
  24. Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019a), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus., 134(11), p. 555. https://doi.org/10.1140/epjp/i2019-12912-7
  25. Fattahi, A.M., Safaei, B. and Moaddab, E. (2019b), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., Int. J., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281
  26. Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Indian J. Phys., 93(1), 47-52. https://doi.org/10.1007/s12648-018-1254-9
  27. Ghasemi, A.R., Mohammadi, M.M. and Mohandes, M. (2015), "The role of carbon nanofibers on thermo-mechanical properties of polymer matrix composites and their effect on reduction of residual stresses", Compos. B. Eng., 77, 519-527. https://doi.org/10.1016/j.compositesb.2015.03.065
  28. Ghasemi, A.R., Mohammadi Fesharaki, M. and Mohandes, M. (2017), "Three-phase micromechanical analysis of residual stresses in reinforced fiber by carbon nanotubes", J. Compos. Mater., 51(12), 1783-1794. https://doi.org/10.1177/0021998316669854
  29. Gholami, R. and Ansari, R. (2018), "Nonlinear bending of third-order shear deformable carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with different edge supports", Eur. Phys. J. Plus, 133(7), 282. https://doi.org/10.1140/epjp/i2018-12103-2
  30. Gholami, R., Ansari, R. and Gholami, Y. (2018), "Numerical study on the nonlinear resonant dynamics of carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with various boundary conditions", Aerosp. Sci. Technol., 78, 118-129. https://doi.org/10.1016/j.ast.2018.03.043
  31. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026
  32. Han, S., Meng, Q., Araby, S., Liu, T. and Demiral, M. (2019), "Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: experimental and numerical analysis", Compos. Part A. Appl., 120, 116-126. https://doi.org/10.1016/j.compositesa.2019.02.027
  33. He, X.Q., Rafiee, M., Mareishi, S. and Liew, K.M. (2015), "Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams", Compos. Struct., 131, 1111-1123. https://doi.org/10.1016/j.compstruct.2015.06.038
  34. Javani, M., Kiani, Y. and Eslami, M.R. (2019), "Geometrically nonlinear rapid surface heating of temperature-dependent FGM arches", Aerosp. Sci. Technol., 90, 264-274. https://doi.org/10.1016/j.ast.2019.04.049
  35. Kamarian, S., Shakeri, M. and Yas, M.H. (2018), "Natural frequency analysis and optimal design of CNT/fiber/polymer hybrid composites plates using mori-tanaka approach, GDQ technique, and firefly algorithm", Polym. Compos., 39(5), 1433-1446. https://doi.org/10.1002/pc.24083
  36. Karami, B., Shahsavari, D., Ordookhani, A., Gheisari, P., Li, L. and Eyvazian, A. (2020), "Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions", Steel Compos. Struct., Int. J., 36(6), 689-702. https://doi.org/10.12989/scs.2020.36.6.689
  37. Katariya, P., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595
  38. Khorasani, M., Eyvazian, A., Karbon, M., Tounsi, A., Lampani, L. and Sebaey, T.A. (2020), "Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects", Smart Struct. Syst., Int. J., 26(3), 331-343. https://doi.org/10.12989/sss.2020.26.3.331
  39. Kiani, Y. and Eslami, M.R. (2010), Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4
  40. Kiani, Y. and Mirzaei, M. (2018), "Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements", Compos. Struct., 186, 114-122. https://doi.org/10.1016/j.compstruct.2017.11.086
  41. Kim, M., Park, Y.B., Okoli, O.I. and Zhang, C. (2009), "Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites", Compos. Sci. Technol., 69(3-4), 335-342. https://doi.org/10.1016/j.compscitech.2008.10.019
  42. Lee, S.Y. (2019), "Dynamic instability of carbon nanotubes/fiber/polymer multiscale composite spherical shells with delamination around a cutout", Int. J. Struct. Stab. Dy., 19(11), 1950132. https://doi.org/10.1142/S0219455419501323
  43. Lee, S.Y. (2020), "Dynamic stability and nonlinear transient behaviors of CNT-reinforced fiber/polymer composite cylindrical panels with delamination around a cutout", Nonlinear Dyn., 1-19. https://doi.org/10.1007/s11071-020-05477-x.
  44. Lee, S.Y. and Hwang, J.G. (2019), "Finite element nonlinear transient modelling of carbon nanotubes reinforced fiber/polymer composite spherical shells with a cutout", Nanotechnol. Rev., 8(1), 444-451. https://doi.org/10.1515/ntrev-2019-0039
  45. Mohammadimehr, M. and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., Int. J., 19(3), 309-322. https://doi.org/10.12989/sss.2017.19.3.309
  46. Motezaker, M. and Eyvazian, A. (2020), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., Int. J., 73(5), 481-486. https://doi.org/10.12989/sem.2020.73.5.481
  47. Nguyen, D.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266
  48. Nguyen, D.D. and Pham, D.N. (2017), "The dynamic response and vibration of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundation", Materials, 10(10), p. 1194. https://doi.org/10.3390/ma10101194
  49. Nguyen, D.D., Tran, Q.Q. and Nguyen, D.K. (2017), "New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature", Aerosp. Sci. Technol., 71, 360-372. https://doi.org/10.1016/j.ast.2017.09.031
  50. Radue, M.S. and Odegard, G.M. (2018), "Multiscale modeling of carbon fiber/carbon nanotube/epoxy hybrid composites: Comparison of epoxy matrices", Compos. Sci. Technol., 166, 20-26. https://doi.org/10.1016/j.compscitech.2018.03.006.
  51. Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams", Comput. Math. Appl., 66(7), 1147-1160. https://doi.org/10.1016/j.camwa.2013.04.031
  52. Rafiee, M., He, X.Q., Mareishi, S. and Liew, K.M. (2014a), "Modeling and stress analysis of smart CNTs/fiber/polymer multiscale composite plates", Int. J. Appl. Mech., 6(3), 1450025. https://doi.org/10.1142/S1758825114500252
  53. Rafiee, M., Liu, X.F., He, X.Q. and Kitipornchai, S. (2014b), "Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates", J. Sound Vib., 333(14), 3236-3251. https://doi.org/10.1016/j.jsv.2014.02.033
  54. Rafiee, M., Nitzsche, F. and Labrosse, M.R. (2018), "Cross-sectional design and analysis of multiscale carbon nanotubes-reinforced composite beams and blades", Int. J. Appl. Mech., 10(3), 1850032. https://doi.org/10.1142/S1758825118500321
  55. Rahman, M.M., Zainuddin, S., Hosur, M.V., Malone, J.E., Salam, M.B.A., Kumar, A. and Jeelani, S. (2012), "Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs", Compos. Struct., 94(8), 2397-2406. https://doi.org/10.1016/j.compstruct.2012.03.014
  56. Rahmanian, S., Suraya, A.R., Shazed, M.A., Zahari, R. and Zainudin, E.S. (2014), "Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers", Mater. Des., 60, 34-40. https://doi.org/10.1016/j.matdes.2014.03.039
  57. Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC press.
  58. Rodriguez, A.J., Guzman, M.E., Lim, C.S. and Minaie, B. (2011), "Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics", Carbon, 49(3), 937-948. https://doi.org/10.1016/j.carbon.2010.10.057
  59. Safarpour, M., Rahimi, A., NoormohammadiArani, O. and Rabczuk, T. (2020), "Frequency characteristics of multiscale hybrid nanocomposite annular plate based on a Halpin-Tsai homogenization model with the aid of GDQM", Appl. Sci., 10(4), 1412. https://doi.org/10.3390/app10041412
  60. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., Int. J., 35(5), 659-670. https://doi.org/10.12989/SCS.2020.35.5.659
  61. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-277. https://doi.org/10.12989/anr.2019.7.4.265
  62. Seidi, J. and Kamarian, S. (2017), "Free vibrations of non-uniform CNT/fiber/polymer nanocomposite beams", Curved Layer. Struct., 4(1), 21-30. https://doi.org/10.1515/cls-2017-0003
  63. Shahbazi, Y., Delavari, E. and Chenaghlou, M.R. (2014), "Predicting the buckling load of smart multilayer columns using soft computing tools", Smart Struct. Syst., Int. J., 13(1), 81-98. https://doi.org/10.12989/sss.2014.13.1.081
  64. Shokravi, M. (2018), "Dynamic buckling of smart sandwich beam subjected to electric field based on hyperbolic piezoelasticity theory", Smart Struct. Syst., Int. J., 22(3), 327-334. https://doi.org/10.12989/sss.2018.22.3.327
  65. Shokrieh, M.M., Daneshvar, A., Akbari, S. and Chitsazzadeh, M. (2013), "The use of carbon nanofibers for thermal residual stress reduction in carbon fiber/epoxy laminated composites", Carbon, 59, 255-263. https://doi.org/10.1016/j.carbon.2013.03.016
  66. Song, Y.S. (2007), "Multiscale fiber-reinforced composites prepared by vacuum-assisted resin transfer molding", Polym. Compos., 28(4), 458-461. https://doi.org/10.1002/pc.20301
  67. Song, M., Chen, L., Yang, J., Zhu, W. and Kitipornchai, S. (2019), "Thermal buckling and postbuckling of edge-cracked functionally graded multilayer graphene nanocomposite beams on an elastic foundation", Int. J. Mech. Sci., 161, 105040. https://doi.org/10.1016/j.ijmecsci.2019.105040
  68. Sung, D.H., Kim, M. and Park, Y.B. (2018), "Prediction of thermal conductivities of carbon-containing fiber-reinforced and multiscale hybrid composites", Compos. Part B Eng., 133, 232-239. https://doi.org/10.1016/j.compositesb.2017.09.032
  69. Talebizadehsardari, P., Eyvazian, A., Musharavati, F., Mahani, R.B. and Sebaey, T.A. (2020a), "Elastic Wave Characteristics of Graphene Reinforced Polymer Nanocomposite Curved Beams Including Thickness Stretching Effect", Polymers, 12(10), p. 2194. https://doi.org/10.3390/polym12102194
  70. Talebizadehsardari, P., Eyvazian, A., Azandariani, M.G., Tran, T.N., Rajak, D.K. and Mahani, R.B. (2020b), "Buckling analysis of smart beams based on higher order shear deformation theory and numerical method", Steel Compos. Struct., Int. J., 35(5), 635-640. https://doi.org/10.12989/scs.2020.35.5.635
  71. Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations", J. Therm. Stress., 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928
  72. Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F. and Chou, T.W. (2002), "Carbon nanotube/carbon fiber hybrid multiscale composites", J. Appl. Phys., 91(9), 6034-6037. https://doi.org/10.1063/1.1466880.
  73. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2019), "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", Polym. Compos., 40(S1), E102-E126. https://doi.org/10.1002/pc.24520
  74. Van Thanh, N., Dinh Quang, V., Dinh Khoa, N., Seung-Eock, K. and Dinh Duc, N. (2019), "Nonlinear dynamic response and vibration of FG CNTRC shear deformable circular cylindrical shell with temperature-dependent material properties and surrounded on elastic foundations", J. Sandw. Struct. Mater, 21(7), 2456-2483. https://doi.org/10.1177/1099636217752243
  75. Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025
  76. Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H. and Kolahchi, R. (2017), "Dynamic buckling of polymer-carbon nanotube-fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mater., 1099636217743288. https://doi.org/10.1177/1099636217743288