과제정보
This research is supported by Kajima Foundation through a research grant (PI: Dionysius Siringoringo). The first author is grateful to the Japan Society for the Promotion of Science (JSPS) support for the postdoctoral fellowship program in Japan during this research work. Support of measurement device from Bridge and Structure Laboratory, The University of Tokyo is greatly acknowledged.
참고문헌
- Bhowmick, S. and Nagarajaiah, S. (2020), "Identification of full-field dynamic modes using continuous displacement response estimated from vibrating edge video", J. Sound Vib., 115657. https://doi.org/10.1016/j.jsv.2020.115657
- Brincker, R. and Ventura, C. (2015), Introduction to Operational Modal Analysis, John Wiley and Sons.
- Chen, J.G., Wadhwa, N., Cha, Y.J., Durand, F., Freeman, W.T. and Buyukozturk, O. (2015), "Modal identification of simple structures with high-speed video using motion magnification", J. Sound Vib., 345, 58-71. https://doi.org/10.1016/j.jsv.2015.01.024
- Chen, J.G., Davis, A., Wadhwa, N., Durand, F., Freeman, W.T. and Buyukozturk, O. (2017), "Video camera-based vibration measurement for civil infrastructure applications", J. Infra. Syst., 23(3), B4016013. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000348
- Chen, J.G., Adams, T.M., Sun, H., Bell, E.S. and Buyukozturk, O. (2018), "Camera-based vibration measurement of the world war I memorial bridge in portsmouth, New Hampshire", J. Struct. Eng., 144(11), 04018207. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002203
- Cole Jr, H.A. (1973), "On-line failure detection and damping measurement of aerospace structures by random decrement signatures", Technical Report: NASA-CR-2205, Washington, USA. https://ntrs.nasa.gov/search.jsp?R=19730010202
- Feng, D. and Feng, M.Q. (2018), "Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection-A review", Eng. Struct., 156, 105-117. https://doi.org/10.1016/j.engstruct.2017.11.018
- Helfrick, M.N., Niezrecki, C., Avitabile, P. and Schmidt, T. (2011), "3D digital image correlation methods for full-field vibration measurement", Mech. Syst. Signal Proc., 25(3), 917-927. https://doi.org/10.1016/j.ymssp.2010.08.013
- Ibrahim, S.R. (1977), "Random decrement technique for modal identification of structures", J. Spacecr. Rockets, 14(11), 696-700. https://doi.org/10.2514/3.57251
- Izuno, K., Tsushima, Y., Iida, T. and Kawano, K. (2008), "Dynamic response of highway bridge-lighting pole system for level 1 earthquake", J. Appl. Mech., 11, 1039-1046. [In Japanese] https://doi.org/10.2208/journalam.11.1039
- Molina-Viedma, A.J., Felipe-Sese, L., Lopez-Alba, E. and Diaz, F. (2018), "High frequency mode shapes characterization using Digital Image Correlation and phase-based motion magnification", Mech. Syst. Signal Proc., 102, 245-261. https://doi.org/10.1016/j.ymssp.2017.09.019
- Ni, Y.Q., Wang, Y.W., Liao, W.Y. and Chen, W.H. (2019), "A vision-based system for long-distance remote monitoring of dynamic displacement: Experimental verification on a supertall structure", Smart. Struct. Syst., Int. J., 24(6), 769-781. https://doi.org/10.12989/sss.2019.24.6.769
- Otsu, N. (1979), "A threshold selection method from gray-level histograms", IEEE Trans. Syst., Man, Cyber., 9(1), 62-66. https://doi.org/10.1109/TSMC.1979.4310076
- Pedrini, G., Osten, W. and Gusev, M.E. (2006), "High-speed digital holographic interferometry for vibration measurement", Appl. Optics, 45(15), 3456-3462. https://doi.org/10.1364/AO.45.003456
- Peeters, B. and De Roeck, G. (2001), "Stochastic system identification for operational modal analysis: a review", J. Dyn. Syst. Measure, Control, 123(4), 659-667. https://doi.org/10.1115/1.1410370
- Poozesh, P., Sarrafi, A., Mao, Z., Avitabile, P. and Niezrecki, C. (2017), "Feasibility of extracting operating shapes using phasebased motion magnification technique and stereophotogrammetry", J. Sound Vib., 407, 350-366. https://doi.org/10.1016/j.jsv.2017.06.003
- Portilla, J. and Simoncelli, E.P. (2000), "A parametric texture model based on joint statistics of complex wavelet coefficients", Int. J. Comput. Vision, 40(1), 49-70. https://doi.org/10.1023/A:1026553619983
- Sarrafi, A., Mao, Z., Niezrecki, C. and Poozesh, P. (2018), "Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification", J. Sound Vib., 421, 300-318. https://doi.org/10.1016/j.jsv.2018.01.050
- Siringoringo, D.M. and Fujino, Y. (2006), "Experimental study of laser Doppler vibrometer and ambient vibration for vibrationbased damage detection", Eng. Struct., 28(13), 1803-1815 https://doi.org/10.1016/j.engstruct.2006.03.006
- Siringoringo, D.M. and Fujino, Y. (2008), "System identification of suspension bridge from ambient vibration response", Eng. Struct., 30(2), 462-477. https://doi.org/10.1016/j.engstruct.2007.03.004
- Siringoringo, D.M. and Fujino, Y. (2009), "Non-contact operational modal analysis of structural members by laser Doppler vibrometer", Compt. Aided Civil. Infra. Eng., 24(4), 249-265. https://doi.org/10.1111/j.1467-8667.2008.00585.x
- Siringoringo, D.M., Fujino, Y., Nagasaki, A. and Matsubara, T. (2020), "Seismic performance evaluation of existing light poles on elevated highway bridges", Struct. Infra. Eng., 1-15. https://doi.org/10.1080/15732479.2020.1760894
- Vandiver, J.K., Dunwoody, A.B., Campbell, R.B. and Cook, M.F. (1982), "A mathematical basis for the random decrement vibration signature analysis technique", J. Mech. Des., 104(2), 307-313. https://doi.org/10.1115/1.3256341
- Wadhwa, N., Rubinstein, M., Durand, F. and Freeman, W.T. (2013), "Phase-based video motion processing", ACM Trans. Graphics, 32(4), 1-10. https://doi.org/10.1145/2461912.2461966
- Wenzel, H. (2009), Ambient Vibration Monitoring, John Wiley and Sons.
- Yang, Y., Dorn, C., Mancini, T., Talken, Z., Kenyon, G., Farrar, C. and Mascarenas, D. (2017), "Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification", Mech. Syst. Signal Proc., 85, 567-590. https://doi.org/10.1016/j.ymssp.2016.08.041
- Yang, Y., Dorn, C., Mancini, T., Talken, Z., Theiler, J., Kenyon, G., Farrar, C. and Mascarenas, D. (2018), "Reference-free detection of minute, non-visible, damage using full-field, high-resolution mode shapes output-only identified from digital videos of structures", Struct. Health Monit., 17(3), 514-531. https://doi.org/10.1177/1475921717704385
- Yang, Y., Sanchez, L., Zhang, H., Roeder, A., Bowlan, J., Crochet, J., Farrar, C. and Mascarenas, D. (2019), "Estimation of full- field, full-order experimental modal model of cable vibration from digital video measurements with physics-guided unsupervised machine learning and computer vision", Struct. Control. Health Monitor., 26(6), e2358. https://doi.org/10.1002/stc.2358
- Yang, Y., Dorn, C., Farrar, C. and Mascarenas, D. (2020), "Blind, simultaneous identification of full-field vibration modes and large rigid-body motion of output-only structures from digital video measurements", Eng. Struct., 207, 110183. https://doi.org/10.1016/j.engstruct.2020.110183
- Ye, X.W., Dong, C.Z. and Liu, T. (2016a), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart. Struct. Syst., Int. J., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935
- Ye, X.W., Dong, C.Z. and Liu, T. (2016b), "Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification", Smart. Struct. Syst., Int. J., 18(3), 585-599. https://doi.org/10.12989/sss.2016.18.3.585