DOI QR코드

DOI QR Code

Crack prediction in pipeline using ANN-PSO based on numerical and experimental modal analysis

  • Seguini, Meriem (Laboratory of Mechanic of Structures and Stability of Constructions LM2SC, Faculty of Architecture and Civil Engineering, Laboratory of Applied Mechanics, University of Sciences and Technology of Oran Mohamed Boudiaf) ;
  • Khatir, Samir (Faculty of Civil Engineering, Ho Chi Minh City Open University) ;
  • Boutchicha, Djilali (LMA, Mechanical Engineering Department, USTO-MB) ;
  • Nedjar, Djamel (Laboratory of Mechanic of Structures and Stability of Constructions LM2SC, Faculty of Architecture and Civil Engineering, Laboratory of Applied Mechanics, University of Sciences and Technology of Oran Mohamed Boudiaf) ;
  • Wahab, Magd Abdel (Institute of Research and Development, Duy Tan University)
  • Received : 2020.01.31
  • Accepted : 2021.02.02
  • Published : 2021.03.25

Abstract

In this paper, a crack identification using Artificial Neural Network (ANN) is investigated to predict the crack depth in pipeline structure based on modal analysis technique using Finite Element Method (FEM). In various fields, ANN has become one of the most effective instruments using computational intelligence techniques to solve complex problems. This paper uses Particle Swarm Optimization (PSO) to enhance ANN training parameters (bias and weight) by minimizing the difference between actual and desired outputs and then using these parameters to generate the network. The convergence study during the process proves the advantage of using PSO based on two selected parameters. The data are collected from FEM based on different crack depths and locations. The provided technique is validated after collecting the data from experimental modal analysis. To study the effectiveness of ANN-PSO, different hidden layers values are considered to study the sensitivity of the predicted crack depth. The results demonstrate that ANN combined with PSO (ANN-PSO) is accurate and requires a lower computational time in terms of crack identification based on inverse problem.

Keywords

References

  1. Bonnet, M. and Constantinescu, A. (2005), "Inverse problems in elasticity", Inverse Problems, 21, R1. https://doi.org/10.1088/0266-5611/21/2/r01
  2. Dilena, M., Dell'Oste, M.F. and Morassi, A. (2011), "Detecting cracks in pipes filled with fluid from changes in natural frequencies", J. Mech. Syst., 25, 3186-3197. https://doi.org/10.1016/j.ymssp.2011.04.013
  3. Dougdag, M., Ouali, M., Mellel, N. and Attari, K. (2014), "Detection de fissures dans les poutres d'acier: une nouvelle approche par balayage de mesures de vibrations", Mech. Reports, 342(8), 437-449. https://doi.org/10.1016/j.crme.2014.05.001
  4. Fayyadh, M.M., Razak, H.A. and Ismail, Z. (2011), "Combined modal parameters-based index for damage identification in a beamlike structure: theoretical development and verification", J. Arch. Civil Mech. Eng., 11, 587-609. https://doi.org/10.1016/s1644-9665(12)60103-4
  5. Feng, X., Wu, W., Li, X., Zhang, X. and Zhou, J. (2015), "Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors", Smart Struct. Syst., Int. J., 15(2), 245-258. https://doi.org/10.12989/sss.2015.15.2.245
  6. Ghannadi, P. and Kourehli, S.S. (2019), "Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm", Struct. Eng. Mech., Int. J., 70(6), 649-659. https://doi.org/10.12989/sem.2019.70.6.649
  7. Ghannadi, P., Kourehli, S.S., Noori, M. and Altabey, W.A. (2020), "Efficiency of grey wolf optimization algorithm for damage detection of skeletal structures via expanded mode shapes", Adv. Struct. Eng., 1369433220921000. https://doi.org/10.1177/1369433220921000
  8. Galvanetto, U. and Violaris, G. (2007), "Numerical investigation of a new damage detection method based on proper orthogonal decomposition", J. Mech. Syst. Signal Process., 21, 1346-1361. https://doi.org/10.1016/j.ymssp.2005.12.007
  9. Gillich, G.R., Praisach, Z.I., Abdel Wahab, M., Gillich, N., Mituletu, I.C. and Nitescu, C. (2016), "Free vibration of a perfectly clamped-free beam with stepwise eccentric distributed masses", J. Shock Vib., 2016. https://doi.org/10.1155/2016/2086274
  10. Gillich, G.R., Furdui, H., Wahab, M.A. and Korka, Z.I. (2019), "A robust damage detection method based on multi-modal analysis in variable temperature conditions", Mech. Syst. Signal Process., 115, 361-379. https://doi.org/10.1016/j.ymssp.2018.05.037
  11. Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", Comput. Mater. Continua, 59(2), 433-456. https://doi:10.32604/cmc.2019.06660
  12. Khatir, S., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Nguyen, T.N. and Abdel-Wahab, M. (2020), "Improved ANN technique combined with Jaya algorithm for crack identification in plates using XIGA and experimental analysis", Theor. Appl. Fract. Mech., 107, 102554. https://doi.org/10.1016/j.tafmec.2020.102554
  13. Lee, H. and Sohn, H. (2012), "Damage detection for pipeline structures using optic-based active sensing", Smart Struct. Syst., Int. J., 9(5), 461-472. https://doi.org/10.12989/sss.2012.9.5.461
  14. Lee, J.W., Kim, S.R. and Huh, Y.C. (2014), "Pipe crack identification based on the energy method and committee of neural networks", Int. J. Steel Struct.res, 14, 345-354. https://doi.org/10.1007/s13296-014-2014-0
  15. Li, D., Lu, D. and Hou, J. (2017), "Pipeline damage identification based on additional virtual masses", Appl. Sci., 7, 1040. https://doi.org/10.3390/app7101040
  16. Loutridis, S., Douka, E. and Hadjileontiadis, L.J. (2005), "Forced vibration behaviour and crack detection of cracked beams using instantaneous frequency", J. Ndt & E International, 38, 411-419. https://doi.org/10.1016/j.ndteint.2004.11.004
  17. Murigendrappa, S.M., Maiti, S.K. and Srirangarajan, H.R. (2004a), "Experimental and theoretical study on crack detection in pipes filled with fluid", J. Sound Vib., 270, 1013-1032. https://doi.org/10.1016/s0022-460x(03)00198-6
  18. Murigendrappa, S.M., Maiti, S.K. and Srirangarajan, H.R. (2004b), "Frequency-based experimental and theoretical identification of multiple cracks in straight pipes filled with fluid", J. Ndt & E International, 37, 431-438. https://doi.org/10.1016/j.ndteint.2003.11.009
  19. Murigendrappa, S.M., Maiti, S.K. and Srirangarajan, H.R. (2005), "Detection of crack in L-shaped pipes filled with fluid based on transverse natural frequencies", Struct. Eng. Mech., Int. J., 21(6), 635-658. https://doi.org/10.12989/sem.2005.21.6.635
  20. Na, W.B. and Yoon, H.S. (2007), "Parametric density concept for long-range pipeline health monitoring", Smart Struct. Syst., Int. J., 3(3), 357-372. https://doi.org/10.12989/sss.2007.3.3.357
  21. Pandey, A.K. and Biswas, M. (1995), "Experimental verification of flexibility difference method for locating damage in structures", J. Sound Vib., 184, 311-328. https://doi.org/10.1006/jsvi.1995.0319
  22. Rahman, S. (1997), "Probabilistic fracture analysis of cracked pipes with circumferential flaws", Int. J. Press. Vessels Piping, 70, 223-236. https://doi.org/10.1016/s0308-0161(96)00034-8
  23. Rukhaiyar S, Alam M and Samadhiya N. (2018), "A PSO-ANN hybrid model for predicting factor of safety of slope", Int. J. Geotech. Eng., 12, 556-566. https://doi.org/10.1080/19386362.2017.1305652
  24. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Methods Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790
  25. Sinou, J.J. (2009), "A review of damage detection and health monitoring of mechanical systems from changes in the measurement of linear and non-linear vibrations", Mech. Vib.: Measure. Effects Control, 643-702.
  26. Song, X., Huang, S. and Zhao, W. (2006), "Nondestructive testing technique for cracks in long-distance natural gas pipelines", J. Nat. Gas Ind., 26(7), 103-106. https://doi.org/10.1007/bf02830170
  27. Swamidas, A.S.J., Yang, X. and Seshadri, R. (2004), "Identification of cracking in beam structures using Timoshenko and Euler formulations", J. Eng. Mech., 130, 1297-1308. https://doi.org/10.1061/(asce)07339399(2004)130:11(1297)
  28. Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2019), "An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm", Eng. Struct., 199, 109637. https://doi.org/10.1016/j.engstruct.2019.109637
  29. Tran-Ngoc, H., Khatir, S., Ho-Khac, H., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2020a), "Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures", Compos. Struct. J., 113339. https://doi.org/10.1016/j.compstruct.2020.113339
  30. Tran-Ngoc, H., Khatir, S., Le-Xuan, T., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2020b), "A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures", Int. J. Eng. Sci., 157, 103376. https://doi.org/10.1016/j.ijengsci.2020.103376
  31. Tran-Ngoc, H., He, L., Reynders, E., Khatir, S., Le-Xuan, T., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2020c), "An efficient approach to model updating for a multispan railway bridge using orthogonal diagonalization combined with improved particle swarm optimization", J. Sound Vib., 476, 115315. https://doi.org/10.1016/j.jsv.2020.115315
  32. Wang, Y.M., Chen, X.F. and He, Z.J. (2011), "Dubechies wavelet finite element method and genetic algorithm for detection of pipe crack", J. Nondestruct. Test. Eval., 26, 87-99. https://doi.org/10.1080/10589759.2010.521826
  33. Wu, D.H., Huang, S.L., Zhao, W. and Liu, H.Q. (2009), "Research on 3-D simulation of remote field eddy current detection for pipeline cracks", J. Syst. Simul., 21, 6626-6629. https://doi.org/10.4028/www.scientific.net/amr.760-762.1154
  34. Yang, X.F., Swamidas, A.S.J. and Seshadri, R. (2001), "Crack identification in vibrating beams using the energy method", J. Sound Vib., 244, 339-357. https://doi.org/10.1006/jsvi.2000.3498
  35. Zhou, Y.L., Maia, N.M., Sampaio, R.P. and Wahab, M.A. (2017), "Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure", Struct. Health Monitor., 16, 711-731. https://doi.org/10.1177/1475921716680849
  36. Zhou, Y.L., Maia, N.M. and Abdel Wahab, M. (2018), "Damage detection using transmissibility compressed by principal component analysis enhanced with distance measure", J. Vib. Control, 24, 2001-2019. https://doi.org/10.1177/1077546316674544