Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1A3B3067987).
References
- Benkhoui, Y., El Korchi, T. and Reinhold, L. (2019), "UAS-based crack detection using stereo cameras: a comparative study", Proceedings of International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, June.
- Cha, Y.-J., You, K. and Choi, W. (2016), "Vision-based detection of loosened bolts using the Hough transform and support vector machines", Autom. Constr., 71(2), 181-188. https://doi.org/10.1016/j.autcon.2016.06.008
- Dubois, E. and Sabri, S. (1984), "Noise reduction in image sequences using motion-compensated temporal filtering", IEEE Trans. Commun., 32(7), 826-831. https://doi.org/10.1109/TCOM.1984.1096143
- Fischler, M.A. and Bolles, R.C. (1981), "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography", Commun. ACM, 24(6), 381-395. https://doi.org/10.1145/358669.358692
- Grunnet-Jepsen, A., Sweetser, J.N., Winer, P., Takagi, A. and Woodfill, J. (2018), "Projectors for Intel® RealSenseTM Depth Cameras D4xx", Intel.
- Hartley, R. and Zisserman, A. (2003), Multiple View Geometry in Computer Vision, Cambridge University Press, Cambridge, United Kingdom.
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June.
- He, K., Gkioxari, G., Dollar, P. and Girshick, R. (2017), "Mask R-CNN", IEEE International Conference on Computer Vision, Venice, Italy, October.
- Huynh, T.-C. and Kim, J.-T. (2017), "Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage", Smart Mater. Struct., 26(12), 125004. https://doi.org/10.1088/1361-665X/aa931b
- Huynh, T. and Kim, J. (2018), "RBFN-based temperature compensation method for impedance monitoring in prestressed tendon anchorage", Struct. Control Health Monit., 25(6), e2173. https://doi.org/10.1002/stc.2173
- Huynh, T.-C., Dang, N.-L. and Kim, J.-T. (2018), "Preload monitoring in bolted connection using piezoelectric-based smart interface", Sensors, 18(9), 2766. https://doi.org/10.3390/s18092766
- Huynh, T.-C., Park, J.-H., Jung, H.-J. and Kim, J.-T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Autom. Constr., 105, 102844. https://doi.org/10.1016/j.autcon.2019.102844
- Korea Expressway Corporation (2013), "Improvement of bridge inspection system by the damage analysis", Korea Expressway Corporation.
- Lin, T.-Y., Maire, M., Belongie, S., Hays, J, Perona, P., Ramanan, D., Dollar, P. and Zitnick C.L. (2014), "Microsoft COCO: common objects in context", Proceedings of European Conference on Computer Vision, Zurich, Switzerland, September.
- Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B. and Belongie, S. (2017), "Feature pyramid networks for object detection", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July.
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. and Cheng-Yang, F. (2016), "SSD: single shot multibox detector", Proceedings of European Conference on Computer Vision, Amsterdam, The Netherlands, October.
- Park, J.-H., Huynh, T.-C., Choi, S.-H. and Kim, J.-T. (2015), "Vision-based technique for bolt-loosening detection in wind turbine tower", Wind Struct., Int. J., 21(6), 709-726. https://doi.org/10.12989/was.2015.21.6.709
- Ramana, L., Choi, W. and Cha, Y.-J. (2019), "Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm", Struct. Health Monit., 18(2), 422-434. https://doi.org/10.1177/1475921718757459
- Redmon, J. and Farhadi, A. (2018), "YOLOv3: An incremental improvement", arXiv Prepr. arXiv1804.02767.
- Ren, S., He, K., Girshick, R. and Sun, J. (2015), "Faster R-CNN: towards real-time object detection with region proposal networks", Neural Inform. Process. Syst., Montreal, Canada, December.
- Simonyan, K. and Zisserman, A. (2014), "Very deep convolutional networks for large-scale image recognition", arXiv Prepr. arXiv1409.1556.
- Suda, M., Hasuo, Y., Kanaya, A., Ogura, Y. Takishita, T. and Suzuki, Y. (1992), "Development of ultrasonic axial bolting force inspection system for turbine bolts in thermal power plants", JSME Int. J. Ser. 1, Solid Mech. Strength Mater., 35(2), 216-219. https://doi.org/10.1299/jsmea1988.35.2_216
- Torrey, L. and Shavlik, J. (2010), "Transfer learning", in Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, IGI Global, PA, USA.
- Van Dyk, D.A. and Meng, X.-L. (2001), "The art of data augmentation", J. Comput. Graph. Stat., 10(1), 1-50. https://doi.org/10.1198/10618600152418584
- Wang, T., Song, G., Liu, S., Li, Y. and Xiao, H. (2013a), "Review of bolted connection monitoring", Int. J. Distrib. Sens. Netw., 9(12), 871213. https://doi.org/10.1155/2013/871213
- Wang, T., Song, G., Wang, Z. and Li, Y. (2013b), "Proof-of-concept study of monitoring bolt connection status using a piezoelectric based active sensing method", Smart Mater. Struct., 22(8), 87001. https://doi.org/10.1088/0964-1726/22/8/087001
- Zhang, Y., Sun, X., Loh, K.J., Su, W., Xue, Z. and Zhao, X. (2019), "Autonomous bolt loosening detection using deep learning", Struct. Health Monit., 19(1), 105-122. https://doi.org/10.1177/1475921719837509
- Zhao, X., Zhang, Y. and Wang, N. (2019), "Bolt loosening angle detection technology using deep learning", Struct. Control Health Monit., 26(1), e2292. https://doi.org/10.1002/stc.2292