References
- Chan, T.H.T., Law, S.S., Yung, T.H. and Yuan, X.R. (1999), "An interpretive method for moving force identification", J. Sound Vib., 219(3), 503-524. https://doi.org/10.1006/jsvi.1998.1904
- Cho, K., Merrienboer, B., Bahdanau, D. and Bengio, Y. (2014), "On the properties of neural machine translation: encoderdecoder approaches", Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, October.
- Chorowski, J., Bahdanau, D., Cho, K. and Bengio, Y. (2014), "End-to-end continuous speech recognition using attention-based recurrent NN: first results", Deep Learning and Representation Learning Workshop: NIPS 2014, Montreal, QC, Canada, December.
- Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014), "Empirical evaluation of gated recurrent neural networks on sequence modeling", Deep Learning and Representation Learning Workshop: NIPS 2014, Montreal, QC, Canada.
- Das, P. and Deka, G. (2016), History and Evolution of GPU Architecture, IGI Global, Hershey, PA, USA.
- Fu, G. and Hag-Elsafi, O. (2000), "Vehicular overloads: load model, bridge safety, and permit checking", J. Bridge Eng. ASCE, 5(1), 49-57. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:1(49)
- GDOT (2020), Highways, bridges and ferries, in Government of Georgia (ed.), Official Code of Georgia.
- Gonzalez, A., Rowley, C. and OBrien, E. (2008), "A general solution to the identification of moving vehicle forces on a bridge", Int. J. Numer. Methods Eng., 75, 335-354. https://doi.org/10.1002/nme.2262
- Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT Press, Cambridge, MA, USA.
- Graves, A., Mohamed, A. and Hinton, G. (2013), "Speech recognition with deep recurrent neural networks", Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, May.
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Computat., 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Kawakatsu, T., Aihara, K., Takasu, A. and Adachi, J. (2019), "Deep sensing approach to single-sensor vehicle weighing system on bridges", IEEE Sensors J., 19(1), 243-256. https://doi.org/10.1109/JSEN.2018.2872839
- Kim, S., Lee, J., Park, M.-S. and Jo, B.-W. (2009), "Vehicle signal analysis using artificial neural networks for a bridge weigh-in-motion system", IEEE Sensors J., 9(10), 7943-7956. https://doi.org/10.3390/s91007943
- Krizhevsky, A., Sutskever, I. and Hinton, G. (2012), "ImageNet classification with deep convolutional neural networks", Commun. ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
- Law, S.S. and Fang, Y.L. (2001), "Moving force identification: optimal state estimation approach", J. Sound Vib., 239(2), 233-254. https://doi.org/10.1006/jsvi.2000.3118
- Law, S.S., Chan, T.H.T. and Zeng, Q.H. (1997), "Moving force identification: a time domain method", J. Sound Vib., 201(1), 1-22. https://doi.org/10.1006/jsvi.1996.0774
- Law, S.S., Chan, T.H.T. and Zeng, Q.H. (1999), "Moving force identification-a frequency and time domains analysis", J. Dyn. Syst. Measure. Control ASME, 121(3), 394-401. https://doi.org/10.1115/1.2802487
- LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), "Gradient-based learning applied to document recognition", Proceedings of the IEEE, 86, 2278-2324. https://doi.org/10.1109/5.726791
- LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Lydon, M., Taylor, S.E., Robinson, D., Mufti, A. and Brien, E.J.O. (2016), "Recent developments in bridge weigh in motion (B-Wim)", J. Civil Struct. Health Monitor., 6(1), 69-81. https://doi.org/10.1007/s13349-015-0119-6
- Minsky, M. and Papert, S. (1969), Perceptrons: An Introduction to Computational Geometry, MIT Press, Cambridge, MA, USA.
- Moses, F. (1979), "Weigh-in-motion system using instrumented bridges", J. Transport. Eng., 105(3), 233-249.
- O'Connor, C. and Chan, T.H.T. (1988), "Dynamic wheel loads from bridge strains", J. Struct. Eng. ASCE, 114(8), 1703-1723. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1703)
- Quilligan, M. (2003), "Bridge weigh-in motion : development of a 2-D multi-vehicle algorithm", Trita-BKN. Bulletin, 69, pp. viii, 144, Byggvetenskap, Stockholm, Sweden.
- Rosenblatt, F. (1957), The Perceptron - a Perceiving and Recognizing Automaton, Cornell Aeronautical Laboratory.
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagating errors", Nature, 323, 533-536. https://doi.org/10.1038/323533a0
- Schuster, M. and Paliwal, K.K. (1997), "Bidirectional recurrent neural networks", IEEE Transact. Signal Process., 45(11), 2673-2681. https://doi.org/10.1109/78.650093
- Selfridge, O.G. (1959), "Pandemonium: a paradigm for learning", In: Neurocomputing: Foundations of Research, pp. 115-122.
- Skokandic, D., Znidaric, A., Mandic-Ivankovic, A. and Kreslin, M. (2017), "Application of bridge weigh-in-motion measurements in assessment of existing road bridges", Proceedings of the Value of Structural Health Monitoring for the Reliable Bridge Management, Zagreb, Croatia, March.
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014), "Dropout: a simple way to prevent neural networks from overfitting", J. Mach. Learn. Res., 15(56), 1929-1958.
- Sutskever, I., Vinyals, O. and Le, Q.V. (2014), "Sequence to sequence learning with neural networks", Proceedings of 2014 Advances in Neural Information Processing Systems, Montreal, QC, Canada, December.
- Tikhonov, A.N. and Arsenin, V.Y. (1977), Solutions of Ill-Posed Problems, Kluwer Academic Publishers.
- Wu, S. and Shi, Z. (2006), "Identification of vehicle axle loads based on FEM-Wavelet-Galerkin method", J. Vib. Eng., 19(4), 494-498. https://doi.org/10.3969/j.issn.1004-4523.2006.04.011
- Yang, J.C., Yu, K., Gong, Y.H. and Huang, T. (2009), "Linear spatial pyramid matching using sparse coding for image classification", Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, June. https://doi.org/10.1109/CVPR.2009.5206757
- Yu, Y., Cai, C.S. and Deng, L. (2016), "State-of-the-art review on bridge weigh-in-motion technology", Adv. Struct. Eng. SAGE, 19(9), 1514-1530. https://doi.org/10.1177/1369433216655922
- Zhang, R., Lv, W. and Guo, Y. (2010), "A vehicle weigh-in-motion system based on Hopfield neural network adaptive filter", Proceedings of 2010 International Conference on Communications and Mobile Computing, Shenzhen, Guangdong, China, April. https://doi.org/10.1109/CMC.2010.11
- Zhang, Q.R., Zhang, M., Chen, T.H., Sun, Z.F., Ma, Y.Z. and Yu, B. (2019), "Recent advances in convolutional neural network acceleration", Neurocomputing, 323, 37-51. https://doi.org/10.1016/j.neucom.2018.09.038
- Zhu, X.Q. and Law, S.S. (2015), "Structural health monitoring based on vehicle-bridge interaction: accomplishments and challenges", Adv. Struct. Eng. SAGE, 18(12), 1999-2015. https://doi.org/10.1260/1369-4332.18.12.1999
- Zhu, X.Q. and Law, S.S. (2016), "Recent developments in inverse problems of vehicle-bridge interaction dynamics", J. Civil Struct. Health Monitor., 6(1), 107-128. https://doi.org/10.1007/s13349-016-0155-x
- Zhu, X.Q., Law, S.S. and Bu, J.Q. (2006), "A state space formulation for moving loads identification", J. Vib. Acoust. ASME, 128(4), 509-520. https://doi.org/10.1115/1.2202149