References
- Azqandi, M.S., Hassanzadeh, M. and Arjmand, M. (2019), "Sensitivity analysis based on complex variables in FEM for linear structures", Adv. Computat. Des., Int. J,, 4(1), 15-32. https://doi.org/10.12989/acd.2019.4.1.015
- Balavalad, K.B. and Sheeparamatti, B.G. (2015), "A critical review of MEMS capacitive pressure sensors", Sensors Transducers, 187(4), 120-128.
- Eaton, W.P., Bitsie, F., Smith, J.H. and Plummer, D.W. (1999), "A new analytical solution for diaphragm deflection and its application to a surface-micromachined pressure sensor", Proceedings of International Conference on Modeling and Simulation of Microsystems.
- Ebrahimi, F., Hosseini, S.H.S. and Singhal, A. (2020), "A comprehensive review on the modeling of smart piezoelectric nanostructures", Struct. Eng. Mech., Int. J., 74(5), 559-581. https://doi.org/10.12989/sem.2020.74.5.559
- Fathi, N.A. and Moradi, Z.A. (2014), "Design and Optimization of Piezoresistive MEMS Pressure Sensors Using ABAQUS", Middle-East J. Scientif. Res., 21(12), 2299-2305.
- Fu, C., Si, W., Li, H., Li, D., Yuan, P. and Yu, Y. (2017), "A novel high-performance beam-supported membrane structure with enhanced design flexibility for partial discharge detection", Sensors, 17(3), 593. https://doi.org/10.3390/s17030593
- Ganji, B.A. and Taybi, M. (2017), "A Novel High Sensitivity MEMS Acoustic Sensor using Corrugated Diaphragm", Majlesi J. Electr. Eng., 11(4), 53-57.
- Gui, Y., Zhang, Y., Liu, G., Hao, Y. and Gao, C. (2016), "Design and simulation of corrugated diaphragm applied to the MEMS fiber optic pressure sensor", Proceedings of IEEE Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Sendai, Japan, December, pp. 17-20.
- Hayber, S.E., Tabaru, T.E. and Saracoglu, O.G. (2019), "A novel approach based on simulation of tunable MEMS diaphragm for extrinsic Fabry-Perot sensors", Optics Communications, 430, 14-23. https://doi.org/10.1016/j.optcom.2018.08.021
- Hong, E., Trolier-McKinstry, S., Smith, R., Krishnaswamy, S.V. and Freidhoff, C.B. (2006), "Vibration of micromachined circular piezoelectric diaphragms", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53(4), 697-705. https://doi.org/10.1109/TUFFC.2006.1621496
- Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017), "Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 61(5), 617-624. https://doi.org/10.12989/sem.2017.61.5.617
- Ke, F., Miao, J. and Wang, Z. (2009), "A wafer-scale encapsulated RF MEMS switch with a stress-reduced corrugated diaphragm", Sensors Actuat., A: Phys., 151(2), 237-243. https://doi.org/10.1016/j.sna.2009.02.031
- Li, X., Lin, R., Kek, H., Miao, J. and Zou, Q. (2001), "Sensitivity-improved silicon condenser microphone with a novel single deeply corrugated diaphragm", Sensors Actuat. A: Phys., 92, 257-262. https://doi.org/10.1016/S0924-4247(01)00582-9
- Li, X., Liu, Q., Pang, S., Xu, K., Tang, H. and Sun, C. (2012), "High-temperature piezoresistive pressure sensor based on implantation of oxygen into silicon wafer", Sensors Actuat.: A. Phys., 179, 277-282. https://doi.org/10.1016/j.sna.2012.03.027
- Li, H., Deng, H., Zheng, G., Shan, M., Zhong, Z. and Liu, B. (2019), "Reviews on corrugated diaphragms in miniature fiber-optic pressure sensors", Appl. Sci., 9, 2241. https://doi.org/10.3390/app9112241
- Lou, L., Zhang, S., Park, W.T., Tsai, J.M., Kwong, D.L. and Lee, C. (2012), "Optimization of NEMS pressure sensors with a multilayered diaphragm using silicon nanowires as piezoresistive sensing elements", J. Micromech. Microeng., 22(5), 055012. https://doi.org/10.1088/0960-1317/22/5/055012
- Luharuka, R., Noh, H.M., Kim, S.K., Mao, H., Wong, L. and Hesketh, P.J. (2006), "Improved manufacturability and characterization of a corrugated Parylene diaphragm pressure transducer", J. Micromech. Microeng., 16, 1468-1474. https://doi.org/10.1088/0960-1317/16/8/005
- Malhaire, C. (2012), "Comparison of two experimental methods for the mechanical characterization of thin or thick films from the study of micromachined circular diaphragms", Rev. Scientif. Instrum., 83(5), 055008. https://doi.org/10.1063/1.4719964
- Mathur, H., Agarwal, V. and Sengar, K. (2017), "Finite Element Analysis of MEMS Based Piezoresistive Diamond Thin Film Cantilever Pressure Sensor", Int. Res. J. Eng. Technol., 4(2), 1685-1689.
- Meti, S., Balavald, K.B. and Sheeparmatti, B.G. (2016), "MEMS piezoresistive pressure sensor: a survey", Int. J. Eng. Res. Applicat., 6(4), 23-31.
- Miao, J., Lin, R., Chen, L., Zou, Q., Lim, S.Y. and Seah, S.H. (2002), "Design Considerations in Micromachined Silicon Microphones", Microelectr. J., 33(1-2), 21-28. https://doi.org/10.1016/S0026-2692(01)00100-8
- Mohammadi, V. and Sheikhi, M.H. (2009), "Design, Modeling and Optimization of a Multilayer Thin-Film Pzt Diaphragm Used in Pressure Sensor", Int. J. Eng. Appl. Sci., 1(4), 27-38.
- Mosser, V., Suski, J., Goss, J. and Obermeier, E. (1991), "Piezoresistive pressure sensors based on polycrystalline silicon", Sensors Actuat.: A. Phys., 28, 113-132. https://doi.org/10.1016/0924-4247(91)85020-O
- Nallathambi, A. and Shanmuganantham, T. (2015a), "Performance analysis of slotted square diaphragm for mems pressure sensor", ICTACT J. Microelectron., 1(2), 62-67. https://doi.org/10.21917/ijme.2015.0011
- Nallathambi, A. and Shanmuganantham, T. (2015b), "Design of diaphragm based MEMS pressure sensor with sensitivity analysis for environmental applications", Sensors Transduc., 188(5), 48-54.
- Niu, Z., Liu, K. and Wang, H. (2017), "A new method for the design of pressure sensor in hyperbaric environment", Sensor Review, 37(1), 110-116. https://doi.org/10.1108/SR-04-2016-0081
- Rahman, S.H.A., Soin, N. and Ibrahim, F. (2017), "Load deflection analysis of rectangular graphene diaphragm for MEMS intracranial pressure sensor applications", Microsyst. Technol., 24(2), 1147-1152. https://doi.org/10.1109/84.285722
- Scheeper, P.R., Olthuis, W. and Bergveld, P. (1994), "The design, fabrication, and testing of corrugated silicon nitride diaphragms", J. Microelectromech. Syst., 3(1), 36-42. https://doi.org/10.1109/84.285722
- Shaby, S.M., Premi, M.G. and Martin, B. (2015), "Enhancing the performance of MEMS piezoresistive pressure sensor using germanium nanowire", Procedia Mater. Sci., 10, 254-262. https://doi.org/10.1016/j.mspro.2015.06.048
- Shaklya, M., Magam, S.P. and Jindal, S.K. (2018), "Design, Modelling and Simulation of MEMS Piezo-Resistive Pressure Sensor with Clamped Edge Silicon Carbide Circular Diaphragm", Proceedings of the 3rd International Conference on Internet of Things and Connected Technologies, ICIoTCT, Jaipur, India, March, pp. 26-27. http://dx.doi.org/10.2139/ssrn.3170293
- Sim, W., Kim, D., Kim, K., Kwon, K., Kim, B., Choi, B., Yang, S. and Park, J. (2001), "Fabrication, Test and Simulation of a Parylene Diaphragm", In: Obermeier E. (eds) Transducers '01 Eurosensors XV, Springer, Berlin, Heidelberg, pp. 1382-1385. https://doi.org/10.1007/978-3-642-59497-7_319
- Sim, W., Kim, B., Choi, B. and Park, J.O. (2005), "Theoretical and experimental studies on the parylene diaphragms for microdevices", Microsyst. Technol., 11(1), 11-15. https://doi.org/10.1007/s00542-003-0342-7
- Suja, K.J., Raveendran, E.S. and Komaragiri, R. (2013), "Investigation on better sensitive silicon based MEMS pressure sensor for high pressure measurement", Int. J. Comput. Applicat., 72(8), 40-47.
- Suzuki, R., Nguyen, T.V., Takahata, T. and Shimoyama, I. (2019), "A Piezoresistive Vibration Sensor with Liquid on Corrugated Membrane", Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea, January, pp. 688-691. https://doi.org/10.1109/MEMSYS.2019.8870790
- Tran, A.V., Zhang, X. and Zhu, B. (2018), "Mechanical structural design of a piezoresistive pressure sensor for low-pressure measurement: a computational analysis by increases in the sensor sensitivity", Sensors, 18, 1-15. https://doi.org/10.3390/s18072023
- Uzun, B. and Civalek, O. (2019), "Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method", Adv. Nano Res., Int. J., 7(2), 99-108. https://doi.org/10.12989/anr.2019.7.2.099
- Wang, W.J., Lin, R.M. and Ren, Y. (2004), "Design and fabrication of high sensitive microphone diaphragm using deep corrugation technique", Microsyst. Technol., 10(2), 142-146. https://doi.org/10.1007/s00542-003-0322-y
- Xu, T., Zhao, L., Jiang, Z., Guo, X., Ding, J., Xiang, W. and Zhao, Y. (2016), "A high sensitive pressure sensor with the novel bossed diaphragm combined with peninsula-island structure", Sensors Actuat.: A. Phys., 244, 66-76. https://doi.org/10.1016/j.sna.2016.04.027
- Yu, H. and Huang, J. (2015), "Design and application of a high sensitivity piezoresistive pressure sensor for low pressure conditions", Sensors, 15(9), 22692-22704. https://doi.org/10.3390/s150922692
- Zhao, L., Xu, T., Hebibul, R., Jiang, Z., Ding, J., Peng, N., Guo, X., Xu, Y., Wang, H. and Zhao, Y. (2016), "A bossed diaphragm piezoresistive pressure sensor with a peninsula-island structure for the ultra-low-pressure range with high sensitivity", Measure. Sci. Technol., 27, 1-21. https://doi.org/10.1088/0957-0233/27/12/124012
- Zhu, S.E., Krishna Ghatkesar, M., Zhang, C. and Janssen, G.C.A.M. (2013), "Graphene based piezoresistive pressure sensor", Applied Physics Letters, 102(16), 161904. https://doi.org/10.1063/1.4802799
- Zhu, J., Wang, M., Chen, L., Ni, X. and Ni, H. (2017), "An optical fiber Fabry-Perot pressure sensor using corrugated diaphragm and angle polished fiber", Optic. Fiber Technol., 34(1), 42-46. https://doi.org/10.1016/j.yofte.2016.12.004