DOI QR코드

DOI QR Code

Mean-shortfall optimization problem with perturbation methods

퍼터베이션 방법을 활용한 평균-숏폴 포트폴리오 최적화

  • Won, Hayeon (Department of Statistics, Sungkyunkwan University) ;
  • Park, Seyoung (Department of Statistics, Sungkyunkwan University)
  • 원하연 (성균관대학교 통계학과) ;
  • 박세영 (성균관대학교 통계학과)
  • Received : 2020.11.03
  • Accepted : 2020.12.21
  • Published : 2021.02.28

Abstract

Many researches have been done on portfolio optimization since Markowitz (1952) published a diversified investment model. Markowitz's mean-variance portfolio optimization problem is established under the assumption that the distribution of returns follows a normal distribution. However, in real life, the distribution of returns does not follow a normal distribution, and variance is not a robust statistic as it is heavily influenced by outliers. To overcome these potential issues, mean-shortfall portfolio model was proposed that utilized downside risk, shortfall, as a risk index. In this paper, we propose a perturbation method that uses the shortfall as a risk index of the portfolio. The proposed portfolio utilizes an adaptive Lasso to obtain a sparse and stable asset selection because it can reduce management and transaction costs. The proposed optimization is easily applicable as it can be computed using an efficient linear programming. In our real data analysis, we show the validity of the proposed perturbation method.

Markowitz (1952)의 분산투자 모형 발표 이후 포트폴리오 최적화에 대한 많은 연구가 이루어졌다. 마코위츠의 평균-분산 포트폴리오 최적화 모형은 수익 분포가 정규분포를 따른다는 가정하에서 성립한다. 그러나 실생활에서는 수익 분포가 정규분포를 따르지 않는 경우가 존재한다. 또한 분산은 이상치의 영향을 많이 받는 민감한 지표이다. 이런 분산의 단점을 보완할 수 있는 하방위험인 숏폴(Shortfall)을 위험 지표로 적용함으로써 수익 분포에 대해 최적화가 가능한 평균-숏폴 포트폴리오 모형이 제안되었다. 또한 Jorion (2003)과 Park(2019)은 포트폴리오의 위험도를 최소화하는 동시에 적은 수의 자산으로 구성(sparse)되고 안정적(stable)인 포트폴리오를 얻는 퍼터베이션 방법을 제안하였다. 본 논문에서는 평균-숏폴 포트폴리오 모형에 퍼터베이션 방법과 adaptive Lasso를 적용하여 사용되는 자산의 수가 적으면서 안정적이고 쉽게 적용 가능한 포트폴리오 모형을 제안한다. 그리고 실증 데이터 분석을 통하여 모형의 타당성을 입증한다.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea grant funded by the Korea government (MSIP) (No. NRF- 2019R1C1C1003805).

References

  1. Arrow, K. J. (1971). Essays in the Thoery of Risk-Bearing, North-Holland, Amsterdam.
  2. Artzner, P., Delbaen, F., Eber, J., and Heath, D. (1999). Coherent Measures of Risk, Methematical Finance, 9, 203-228. https://doi.org/10.1111/1467-9965.00068
  3. Bertsimas, D., Lauprete, G. J., and Samarov, A. (2004). Shortfall as a risk measure: properties, optimization and applications, Journal of Economic Dynamics & Control, 28, 1353-1381. https://doi.org/10.1016/S0165-1889(03)00109-X
  4. Black, F. (1972). Capital market equilibrium with restricted borrowing, The Journal of Business, 45, 444-455. https://doi.org/10.1086/295472
  5. Bruni, R., Cesarone, F., Scozzari, A., and Tardella, F. (2017). On exact and approximate stochastic dominance strategies for portfolio selection, European Journal of Operational Research, 259, 322-329. https://doi.org/10.1016/j.ejor.2016.10.006
  6. Fishburn, P. C. (1977). Mean-Risk Analysis with Risk Associated with Below-Target Returns, The American Economic Review, 67, 116-126.
  7. Gerhard, F. and Hess, D. (2003). Multivariate Market Risk Estimators: Reliability and Transaction Costs in the Context of Portfolio Selection, European Journal of Finance, 9, 1-18. https://doi.org/10.1080/13518470110120844
  8. Grootveld, H., Hallerbach, W. (1998). Variance vs downside risk: Is there really that much difference?, European Journal of Operational Research, 114, 304-319. https://doi.org/10.1016/S0377-2217(98)00258-6
  9. Huang, C. and Litzenberger, R. H. (1988). Foundations for Financial Economics. Prentice Hall, New Jersey, 59-62
  10. Jegadeesh, N. and Titman, S. (2001). Profitability of momentum strategies: An evaluation of alternative explanations, The Journal of Finance, 56, 699-720. https://doi.org/10.1111/0022-1082.00342
  11. Jorion, P. (2003). Portfolio optimization with tracking-error constraints, Financial Analysts Journal, 59, 70-82. https://doi.org/10.2469/faj.v59.n5.2565
  12. Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, The Review of Economics and Statistics, 47, 13-37. https://doi.org/10.2307/1924119
  13. Markowitz, H. (1952). Portfolio selection, Journal of Finance, 7, 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
  14. Park, S., Song, H., and Lee, S. (2019). Linear programing models for portfolio optimization using a benchmark, The European Journal of Finance, 25, 435-457. https://doi.org/10.1080/1351847x.2018.1536070
  15. Park, S., Lee, E., Lee, S., and Kim, K. (2019). Dantzig type optimization method with applications to portfolio selection, Sustainability, 11, 1-32. https://doi.org/10.3390/su11010001
  16. Pratt, J. W. (1964). Risk aversion in the small and in the large, Econometrica, 32(1/2), 122-136. https://doi.org/10.2307/1913738
  17. RiskMetrics (1996). Technical Document. New York: Morgan Guarantee Trust Company, Global Research.
  18. Rockafeller, R. T. and Uryasev, S. (2000). Optimization of conditional value-at-risk, Journal of Risk, 2, 21-42. https://doi.org/10.21314/JOR.2000.038
  19. Rockafeller, R. T. (2007). Coherent Approaches to Risk in Optimization Under Uncertainty, Informs.
  20. Roy, A. D. (1952). Safety first and the holding of assets, Econometrica, 20, 431-449. https://doi.org/10.2307/1907413
  21. Roll, R. (1992). A mean-variance analysis of tracking error, Journal of Portfolio Management, 18, 13-22. https://doi.org/10.3905/jpm.1992.701922
  22. Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk, The Journal of Financial, 19, 425-442.
  23. Sharpe, W. F. (1966). Mutual fund performance, The Journal of Business, 39, 119-138. https://doi.org/10.1086/294846