DOI QR코드

DOI QR Code

Smart Factory Big Data를 활용한 공정 이상 탐지 프로세스 적용 사례 연구

A case study on the application of process abnormal detection process using big data in smart factory

  • 남현우 (가천대학교 응용통계학과)
  • Nam, Hyunwoo (Department of Applied Statistics, Gachon University)
  • 투고 : 2020.10.05
  • 심사 : 2020.12.03
  • 발행 : 2021.02.28

초록

반도체 제조 산업에서는 Big Data에 기초한 Smart Factory 도입과 적용이 가시화되면서 생산 공정의 각 단계에서 수집 가능한 다양한 센서(sensor) 데이터를 활용하여 공정 이상 탐지 및 최종 수율 예측 등에 다양한 분석 방법을 시도하고 있다. 현재 반도체 공정은 원료인 잉곳(ingot)에서 패키징(packaging) 작업 이전의 웨이퍼(wafer) 생산까지 500 600개 이상의 세부 공정과 이와 연계된 수천 개의 계측 공정으로 구성된다. 개별 계측 공정 내의 실제 계측 비율은 대상 제품 대비 0.1%에서 최대 5%를 넘지 못하고 계측 시점별로 일정하게 유지할 수 없다. 이러한 이유로 공정 각 단계의 정상 상태를 간접적으로 판단할 수 있는 장비 센서(sensor) 데이터를 활용하여 관리 여부를 판단하고자 하는 노력이 계속되고 있다. 본 연구에서는 장비 센서 데이터 기반의 공정 이상 탐지 프로세스를 정의하고 현재 적용 되고 있는 기술 통계량 기반 진단 방법의 단점을 보완하기 위해 FDA(Functional Data Analysis)방법을 활용하였다. 실제 현장 사례 데이터에 머신러닝을 이용하여 이상 탐지 정확도 비교를 통해 효과성을 검증하였다.

With the Fourth Industrial Revolution based on new technology, the semiconductor manufacturing industry researches various analysis methods such as detecting process abnormalities and predicting yield based on equipment sensor data generated in the manufacturing process. The semiconductor manufacturing process consists of hundreds of processes and thousands of measurement processes associated with them, each of which has properties that cannot be defined by chemical or physical equations. In the individual measurement process, the actual measurement ratio does not exceed 0.1% to 5% of the target product, and it cannot be kept constant for each measurement point. For this reason, efforts are being made to determine whether to manage by using equipment sensor data that can indirectly determine the normal state of each step of the process. In this study, the Functional Data Analysis (FDA) was proposed to define a process abnormality detection process based on equipment sensor data and compensate for the disadvantages of the currently applied statistics-based diagnosis method. Anomaly detection accuracy was compared using machine learning on actual field case data, and its effectiveness was verified.

키워드

참고문헌

  1. Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
  2. Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique, Journal of Artificial Intelligence research, 16, 321-357. https://doi.org/10.1613/jair.953
  3. Chen, Y. J., Wang, B. C., Wu, J. Z., Wu, Y. C., and Chien, C. F. (2017). Big data analytic for multivariate fault detection and classification in semiconductor manufacturing. In 2017 13th IEEE Conference on Automation Science and Engineering (CASE) (pp. 731-736). IEEE.
  4. Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
  5. Cheng, F. T., Huang, H. C., and Kao, C. A. (2011). Developing an automatic virtual metrology system. IEEE Transactions on Automation Science and Engineering, 9, 181-188. https://doi.org/10.1109/TASE.2011.2169405
  6. Cheng, F. T., Kao, C. A., Chen, C. F., and Tsai, W. H. (2014). Tutorial on applying the VM technology for TFT-LCD manufacturing. IEEE Transactions on Semiconductor Manufacturing, 28, 55-69. https://doi.org/10.1109/TSM.2014.2380433
  7. Chien, C. F., Hsu, C. Y., and Chen, P. N. (2013). Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence. Flexible Services and Manufacturing Journal, 25, 367-388. https://doi.org/10.1007/s10696-012-9161-4
  8. Choqueuse, V., Benbouzid, M. E. H., Amirat, Y., and Turri, S. (2011). Diagnosis of three-phase electrical machines using multidimensional demodulation techniques. IEEE Transactions on Industrial Electronics, 59, 2014-2023. https://doi.org/10.1109/TIE.2011.2160138
  9. Cortes, C. and Vapnik, V. (1995). Support vector machine. Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018
  10. Dalpiaz, G. and Rivola, A. (1997). Condition monitoring and diagnostics in automatic machines: comparison of vibration analysis techniques. Mechanical Systems and Signal Processing, 11, 53-73. https://doi.org/10.1006/mssp.1996.0067
  11. Davis, J., Edgar, T., Porter, J., Bernaden, J., and Sarli, M. (2012). Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Computers & Chemical Engineering, 47, 145-156. https://doi.org/10.1016/j.compchemeng.2012.06.037
  12. Fan, S. K. S., Hsu, C. Y., Tsai, D. M., He, F., and Cheng, C. C. (2020). Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing. IEEE Transactions on Automation Science and Engineering.
  13. Gertler, J. and Cao, J. (2004). PCA based fault diagnosis in the presence of control and dynamics. AIChE Journal, 50, 388-402. https://doi.org/10.1002/aic.10035
  14. Han, Y. and Song, Y. H. (2003). Condition monitoring techniques for electrical equipment-a literature survey. IEEE Transactions on Power Delivery, 18, 4-13. https://doi.org/10.1109/TPWRD.2002.801425
  15. Hastie, T., Tibshirani, R., and Buja, A. (1994). Flexible discriminant analysis by optimal scoring. Journal of the American Statistical Association, 89, 1255-1270. https://doi.org/10.1080/01621459.1994.10476866
  16. International Roadmap for Devices and Systems (IRDS): Factory Integration White Paper, 2016 Edition. Available online: http://irds.ieee.org/images/files/pdf/2016FI.pdf (accessed on 1 June 2017).
  17. International Technology Roadmap for Semiconductors (ITRS): Factory Integration Chapter, 2016 Edition. Available online: www.itrs2.net (accessed on 1 June 2017).
  18. Khan, A. A., Moyne, J. R., and Tilbury, D. M. (2008). Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares. Journal of Process Control, 18, 961-974. https://doi.org/10.1016/j.jprocont.2008.04.014
  19. Li, G., Qin, S. J., and Zhou, D. (2010). Geometric properties of partial least squares for process monitoring. Automatica , 46, 204-210. https://doi.org/10.1016/j.automatica.2009.10.030
  20. Lujan-Moreno, G. A., Howard, P. R., Rojas, O. G., and Montgomery, D. C. (2018). Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study, Expert Systems with Applications, 109, 195-205. https://doi.org/10.1016/j.eswa.2018.05.024
  21. May, G. S., and Spanos, C. J. (2006). Fundamentals of Semiconductor Manufacturing and Process Control. John Wiley & Sons.
  22. Moyne, J. and Armacost, M. (2017, March). Big Data Analytics Applied to Semiconductor Manufacturing. In 2017 Spring Meeting and 13th Global Congress on Process Safety. AIChE.
  23. Moyne, J. and Iskandar, J. (2017). Big data analytics for smart manufacturing: Case studies in semiconductor manufacturing. Processes, 5, 39. https://doi.org/10.3390/pr5030039
  24. Moyne, J., Schulze, B., Iskandar, J., and Armacost, M. (2016, May). Next generation advanced process control: Leveraging big data and prediction. In 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) (pp. 191-196). IEEE.
  25. Quinlan, J. R. (1997). C5.0. http://www.rulequest.com/see5-info.html.
  26. Ramsay, J. O., Hooker, G., and Graves, S. (2009). Functional data analysis with R and MATLAB: Springer Science & Business Media.
  27. Romero-Torres, S., Moyne, J., and Kidambi, M. (2017). Towards Pharma 4.0; Leveraging Lessons and Innovation from Silicon Valley. American Pharmaceutical Review, 5.
  28. SEMI, S. (2014). E133-1014-SEMI Standard Specification for Automated Process Control Systems Interface. Milpitas, CA,(Semiconductor Equipment and Materials.)
  29. Shang, C. and You, F. (2019). Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era, Engineering, 5, 1010-1016. https://doi.org/10.1016/j.eng.2019.01.019
  30. Wuest, T., Irgens, C., and Thoben, K. D. (2014). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25, 1167-1180. https://doi.org/10.1007/s10845-013-0761-y