COMMON FIXED POINT RESULTS FOR MAPPINGS UNDER NONLINEAR CONTRACTION OF CYCLIC FORM IN b-METRIC SPACES

Ayat Rabaiah ${ }^{1}$, Abdallah Tallafha ${ }^{2}$ and Wasfi Shatanawi ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science The University of Jordan, Amman, Jordan
e-mail: aya9160322@ju.edu.jo; ayatrabaiah@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Science The University of Jordan, Amman, Jordan
e-mail: a.tallafha@ju.edu.jo
${ }^{3}$ Department of Mathematics, Faculty of General Science
Prince Sultan University, Riyadh, Saudi Arabia
Department of Mathematics, Faculty of Science
Hashemite University, Zarqa, Jordan
e-mail: wshatanawi@psu.edu.sa; swasfi@hu.edu.jo

Abstract

In this research, we interpret the notion of a b-cyclic (Φ, C, D)-contraction for the pair (g, S) of self-mappings on the set Y. We employ our definition to introduce some common fixed point theorems for the two mappings g and S under a set of conditions. Also we introduce an example to support our results.

1. Introduction

Many years ago, different results were obtained in fixed point theory in bmetric spaces. A main topic in the fixed point theory is the cyclic contraction. Kirk et al. [15] established the first result in this interesting field.

[^0]Now a days, others attained important outcomes in this dominant field see [20, 21, 29, 30]

We start with the definition of a cyclic map.
Definition 1.1. ([29]) Let C and D be non-empty subsets of a metric space (Y, d) and $S: C \cup D \rightarrow C \cup D$. Then S is called a cyclic map if $S(C) \subseteq D$ and $S(D) \subseteq C$.

In 2003, Kirk et al. [15] gave the following interesting theorem in fixed point theory for a cyclic map.

Theorem 1.2. ([15]) Let C and D be nonempty closed subsets of a complete metric space (Y, d). Suppose that $S: C \cup D \rightarrow C \cup D$ is a cyclic map such that

$$
d(S x, S y) \leq k d(x, y), \quad \forall x, y \in D
$$

If $k \in[0,1)$, then S has a unique fixed point in $C \cap D$.
Some of contractive conditions are based on functions called control function which alter the distance between two points in a metric space. Such functions were inaugurated by Khan et al. [17]
Definition 1.3. ([17]) The function $\Phi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:
(1) Φ is continuous and nondecreasing,
(2) $\Phi(\zeta)=0$ if and only if $\zeta=0$.

Definition 1.4. ($[6,11]$) Let Y be a nonempty set and $b \geq 1$ be a given real number. A function $d: Y \times Y \rightarrow[0, \infty)$ is called b-metric. If it satisfies the following properties for each $y_{1}, y_{2}, y_{3} \in Y$,
(1) $d\left(y_{1}, y_{2}\right)=0$ if and only if $y_{1}=y_{2}$,
(2) $d\left(y_{1}, y_{2}\right)=d\left(y_{2}, y_{1}\right)$,
(3) $d\left(y_{1}, y_{3}\right) \leq b\left[d\left(y_{1}, y_{2}\right)+d\left(y_{2}, y_{3}\right)\right]$.

The pair (Y, d) is called a b-metric space.
Example 1.5. Let $Y=l_{P}(R)$ with $0<p<1$, where $l_{p}(R)=\left\{y_{n} \subset R\right.$: $\left.\sum_{n=1}^{\infty}\left|y_{n}\right|^{p}<\infty\right\}$.

Define $d: Y \times Y \rightarrow R^{+}$by:

$$
d(y, z)=\left(\Sigma_{n=1}^{\infty}\left|y_{n}-z_{n}\right|^{p}\right)^{\frac{1}{p}},
$$

where $y=\left\{y_{n}\right\}, z=\left\{z_{n}\right\}$. Then d is a b-metric space (see [12]) with coefficient $b=\frac{1}{p}$.

Example 1.6. Let $Y=L_{p}[0,1]$ be the space of all real function $x(t), t \in[0,1]$ such that for $0<p<1$,

$$
\int_{0}^{1}|y(t)|^{p}<\infty .
$$

Define $d: Y \times Y \rightarrow R^{+}$by:

$$
d(x, y)=\left(\int_{0}^{1}|y(t)-z(t)|^{p} d t\right)^{\frac{1}{p}}
$$

Then d is a b-metric space (see [12]) with coefficient $b=2^{\frac{1}{p}}$.
The above examples show that class of b-metric space is larger than the class of metric spaces. When $b=1$, the concept of b-metric coincides with the concept of metric spaces. Many authors introduce many fixed point theorems in the notion of metric spaces, for more details see $[1,2,3,5,7,8,9,16,22$, $24,25,34,35,36,37,38,39,40,41,42$. Also, for some work on b-metric, we refer the reader to $[4,10,13,18,19,23,26,27,28,31,32,33]$.
Definition 1.7. ([13]) Let (Y, d) be a b - metric space.
(1) A sequence $\left\{y_{n}\right\}$ in Y is said to be Cauchy, if $d\left(y_{n}, y_{m}\right) \rightarrow 0$ as $n, m \rightarrow$ ∞.
(2) A sequence $\left\{y_{n}\right\}$ in Y is said to be convergent, if there exists $y \in Y$ such that $d\left(y_{n}, y\right) \rightarrow 0$ as $n \rightarrow \infty$ and we write $\lim _{n \rightarrow \infty} y_{n}=y$.
(3) The b-metric space (Y, d) is said to be complete if every Cauchy sequence in Y is convergent.

Theorem 1.8. ([14]) Let (Y, d) be a complete b-metric space with constant $b \geq 1$, such that b-metric is a continuous functional. Let $S: Y \rightarrow Y$ be a contraction with constant $k \in[0,1)$ such that $k b<1$. Then S has a unique fixed point.

The justification of this paper is to acquire common fixed point results for mapping satisfying nonlinear contractive conditions of a cyclic form based on the notion of an altering distance function.

2. The main results

We begin with the following definition.
Definition 2.1. Let (Y, d) be a b-metric space and C, D be nonempty closed subsets of Y. Let $g, S: Y \rightarrow Y$ be two mappings. The pair (g, S) is called a b-cyclic (Φ, C, D)-contraction, if the following conditions are satisfied:
(1) Φ is an altering distance function,
(2) $C \cup D$ has a cyclic representation w.r.t. the pair (g, S); that is $g(C) \subseteq$ $D, S(D) \subseteq C$ and $Y=C \cup D$,
(3) there exists $\delta>0$ with $b^{2} \delta<1$ such that for all $x, y \in Y$ with $x \in C$ and $y \in D$, we have

$$
\begin{align*}
& \Phi(b d(g x, S y)) \\
& \leqslant \Phi\left(\delta \max \left\{d(x, y), d(x, g x), d(y, S y), \frac{1}{2 b} d(x, S y), \frac{1}{2 b} d(g x, y)\right\}\right) \tag{2.1}
\end{align*}
$$

From this point till the end of the paper, by Φ we mean altering distance function unless otherwise stated and Y stands for a complete b-metric space. In the rest of this paper, we also mean by N set of non negative integer numbers.

Theorem 2.2. Let (Y, d) be a b-complete metric space and C, D be nonempty closed subsets of Y. Let $g, S: Y \rightarrow Y$ be two mapping. Assume the following:
(1) the pair (g, S) is a b-cyclic ($\Phi, C, D)$ contraction,
(2) g or S is continuous.

Then g and S have a common fixed point.
Proof. Choose $y_{0} \in C$, let $y_{1}=g y_{0}$. Since $g C \subseteq D$, we have $y_{1} \in D$. Also, let $y_{2}=S y_{1}$. Since $S D \subseteq C$, we have $y_{2} \in C$. Continuing this process, we can construct a sequence $\left\{y_{n}\right\}$ in Y such that $y_{2 n+1}=g y_{2 n}, y_{2 n+2}=S y_{2 n+1}$, $y_{2 n} \in C$ and $y_{2 n+1} \in D$.

We divide our proof into the following steps:
Step 1. We will show that $\left\{y_{n}\right\}$ is a Cauchy sequence in (Y, d).
Subcase 1: Suppose that $y_{2 n}=y_{2 n+1}$ for some $n \in N$. Since $y_{2 n}$ and $y_{2 n+1}$ are elements in Y with $y_{2 n} \in C$ and $y_{2 n+1} \in D$, we have

$$
\begin{aligned}
& \Phi\left(b d\left(y_{2 n+1}, y_{2 n+2}\right)\right) \\
&= \Phi\left(d\left(g y_{2 n}, S y_{2 n+1}\right)\right) \\
& \leqslant \Phi\left(\delta \operatorname { m a x } \left\{d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n}, g y_{2 n}\right), d\left(y_{2 n+1}, S y_{2 n+1}\right),\right.\right. \\
&\left.\left.\frac{1}{2 b} d\left(y_{2 n}, S y_{2 n+1}\right), \frac{1}{2 b} d\left(g y_{2 n}, y_{2 n+1}\right)\right\}\right) \\
&= \Phi\left(\delta \operatorname { m a x } \left\{d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n+1}, y_{2 n+2}\right),\right.\right. \\
&\left.\left.\frac{1}{2 b} d\left(y_{2 n}, y_{2 n+2}\right), \frac{1}{2 b} d\left(y_{2 n+1} \cdot y_{2 n+1}\right)\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \Phi\left(\delta d\left(y_{2 n+1}, y_{2 n+2}\right)\right) \\
& \leq \Phi\left(\delta b d\left(y_{2 n+1}, y_{2 n+2}\right)\right) .
\end{aligned}
$$

By properties of ϕ, we have $b d\left(y_{2 n+1}, y_{2 n+2}\right) \leq \delta b d\left(y_{2 n+1}, y_{2 n+2}\right)$. Since $\delta b<1$, we have $b d\left(y_{2 n+1}, y_{2 n+2}\right)=0$ and hence $y_{2 n+2}=y_{2 n+1}$.

Similarly, we may show that $y_{2 n+3}=y_{2 n+2}$. Hence $\left\{y_{n}\right\}$ is a constant sequence in Y, so it is a Cauchy sequence in (Y, d).
Subcase 2: $y_{2 n} \neq y_{2 n+1}$ for all $n \in N$. Given $n \in N$. If n is even, then $n=2 q$ for some $q \in N$.

Since $y_{2 q} \in C, y_{2 q+1} \in D$ and $y_{2 q}, y_{2 q+1}$ are elements in Y, we have
$\Phi\left(b d\left(y_{n+1}, y_{n+2}\right)\right)=\Phi\left(b d\left(y_{2 q+1}, y_{2 q+2}\right)\right)$

$$
=\Phi\left(b d\left(g y_{2 q}, S y_{2 q+1}\right)\right)
$$

$$
\leq \Phi\left(\delta \operatorname { m a x } \left\{d\left(y_{2 q}, y_{2 q+1}\right), d\left(y_{2 q}, g y_{2 q}\right), d\left(y_{2 q+1}, S y_{2 q+1}\right),\right.\right.
$$

$$
\left.\left.\frac{1}{2 b} d\left(y_{2 q}, S y_{2 q+1}\right), \frac{1}{2 b} d\left(g y_{2 q}, y_{2 q+1}\right)\right\}\right)
$$

$$
=\Phi\left(\delta \operatorname { m a x } \left\{d\left(y_{2 q}, y_{2 q+1}\right), d\left(y_{2 q+1}, y_{2 q+2}\right),\right.\right.
$$

$$
\left.\left.\frac{1}{2 b} d\left(y_{2 q}, y_{2 q+2}\right), \frac{1}{2 b} d\left(y_{2 q+1}, y_{2 q+2}\right)\right\}\right)
$$

$$
\leq \Phi\left(\delta \max \left\{d\left(y_{2 q}, y_{2 q+1}\right), d\left(y_{2 q}, y_{2 q+2}\right)\right\}\right)
$$

$$
\leq \Phi\left(\delta b \max \left\{d\left(y_{2 q}, y_{2 q+1}\right), d\left(y_{2 q}, y_{2 q+2}\right)\right\}\right)
$$

If

$$
\max \left\{d\left(y_{2 q}, y_{2 q+1}\right), d\left(y_{2 q+1}, y_{2 q+2}\right)\right\}=d\left(y_{2 q+1}, y_{2 q+2}\right),
$$

then

$$
\begin{aligned}
\Phi\left(b d\left(y_{2 q+1}, y_{2 q+2}\right)\right) & \leq \Phi\left(\delta d\left(y_{2 q+1}, y_{2 q+2}\right)\right) \\
& \leq \Phi\left(\delta b d\left(y_{2 q+1}, y_{2 q+2}\right)\right) \\
& <\Phi\left(d\left(y_{2 q+1}, y_{2 q+2}\right)\right) \\
& \leq \Phi\left(b d\left(y_{2 q+1}, y_{2 q+2}\right)\right),
\end{aligned}
$$

which is a contradiction. Thus

$$
\begin{equation*}
\max \left\{d\left(y_{2 q}, y_{2 q+1}\right), d\left(y_{2 q+1}, y_{2 q+2}\right)\right\}=d\left(y_{2 q}, y_{2 q+1}\right) . \tag{2.2}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\Phi\left(b d\left(y_{2 q+1}, y_{2 q+2}\right)\right) & \leq \Phi\left(\delta d\left(y_{2 q}, y_{2 q+1}\right)\right) \\
& \leq \Phi\left(\delta b d\left(y_{2 q}, y_{2 q+1}\right)\right) . \tag{2.3}
\end{align*}
$$

If n is odd, then $n=2 q+1$ for some $q \in N$. Since $y_{2 q+2}$ and $y_{2 q+1}$ are elements in Y with $y_{2 q+2} \in C$ and $y_{2 q+1} \in D$, we have

$$
\begin{aligned}
& \Phi\left(b d\left(y_{n+2}, y_{n+1}\right)\right) \\
&= \Phi\left(b d\left(y_{2 q+3}, y_{2 q+2}\right)\right) \\
&= \Phi\left(b d\left(g y_{2 q+2}, S y_{2 q+1}\right)\right) \\
& \leq \Phi\left(\operatorname { m a x } \delta \left\{d\left(y_{2 q+2}, y_{2 q+1}\right), d\left(y_{2 q+2} . g y_{2 q+2}\right), d\left(y_{2 q+2}, S y_{2 q+1}\right)\right.\right. \\
&\left.\left.\frac{1}{2 b} d\left(y_{2 q+2, S y_{2 q+1}}\right), \frac{1}{2 b} d\left(g y_{2 q+2}, y_{2 q+1}\right)\right\}\right) \\
& \leq \Phi\left(\delta \operatorname { m a x } \left\{d\left(y_{2 q+2}, y_{2 q+1}\right), d\left(y_{2 q+2}, y_{2 q+3}\right)\right.\right. \\
&\left.\left.\frac{1}{2 b} d\left(y_{2 q+2}, y_{2 q+2}\right), \frac{1}{2 b} d\left(y_{2 q+3}, y_{2 q+1}\right)\right\}\right) \\
& \leq \Phi\left(\delta \max \left\{d\left(y_{2 q+2}, y_{2 q+1}\right), d\left(y_{2 q+2}, y_{2 q+3}\right)\right\}\right) \\
& \leq \Phi\left(\delta b \max \left\{d\left(y_{2 q+2}, y_{2 q+1}\right), d\left(y_{2 q+2}, y_{2 q+3}\right)\right\}\right)
\end{aligned}
$$

If

$$
\max \left\{d\left(y_{2 q+2}, y_{2 q+1}\right), d\left(y_{2 q+2}, y_{2 q+3}\right)=d\left(y_{2 q+2}, y_{2 q+3}\right),\right.
$$

then

$$
\Phi\left(b d\left(y_{2 q+2}, y_{2 q+3}\right)\right) \leq \Phi\left(\delta b d\left(y_{2 q+2}, y_{2 q+3}\right)\right) .
$$

Properties of ϕ implies that

$$
b d\left(y_{2 q+2}, y_{2 q+3}\right) \leq \delta b d\left(y_{2 q+2}, y_{2 q+3}\right)<b d\left(y_{2 q+2}, y_{2 q+3}\right)
$$

which is a contradiction. Therefore

$$
\begin{equation*}
\max \left\{d\left(y_{2 q+2}, y_{2 q+1}\right), d\left(y_{2 q+2}, y_{2 q+3}\right)\right\}=d\left(y_{2 q+2}, y_{2 q+1}\right), \tag{2.4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\Phi\left(b d\left(y_{2 q+3}, y_{2 q+2}\right)\right) \leq \Phi\left(\delta b d\left(y_{2 q+2}, y_{2 q+1}\right)\right) . \tag{2.5}
\end{equation*}
$$

From (2.3) and (2.5), we have

$$
\begin{equation*}
\Phi\left(b d\left(y_{n+1}, y_{n+2}\right)\right) \leq \Phi\left(\delta b d\left(y_{n}, y_{n+1}\right)\right) \leq \Phi\left(b d\left(y_{n}, y_{n+1}\right)\right) . \tag{2.6}
\end{equation*}
$$

Since Φ is an altering distance function, we have $\left\{d\left(y_{n+1}, y_{n+2}\right): n \in \mathbb{N} \cup\{0\}\right\}$ is a bounded nonincreasing sequence. Thus there exists $\zeta \geqslant 0$ such that

$$
\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=\zeta
$$

On letting $n \rightarrow \infty$ in (2.6), we have

$$
\Phi(b \zeta) \leq \Phi(\delta b \zeta)
$$

Claim: $\zeta=0$. Suppose to the contrary, that is, $\zeta \neq 0$. By properties of ϕ, we have

$$
b \zeta \leq \delta b \zeta<\zeta
$$

which is a contradiction. Therefore $\zeta=0$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0 \tag{2.7}
\end{equation*}
$$

Next, we show that $\left\{y_{n}\right\}$ is a Cauchy sequence in b-metric space (Y, d). It is sufficient to show that $\left\{y_{2 n}\right\}$ is a Cauchy sequence in (Y, d). Suppose to the contrary, that is, $\left\{y_{2 n}\right\}$ is not a Cauchy sequence in (Y, d). Then there exists $\epsilon>0$ for which we can find two subsequences $\left\{y_{2 m(i)}\right\}$ and $\left\{y_{2 n(i)}\right\}$ of $\left\{y_{2 n}\right\}$ such that $n(i)$ is the smallest index for which

$$
\begin{equation*}
n(i)>m(i)>i, \quad d\left(y_{2 m(i)}, y_{2 n(i)}\right) \geq \epsilon . \tag{2.8}
\end{equation*}
$$

This means that

$$
\begin{equation*}
d\left(y_{2 m(i)}, y_{2 n(i)-2}\right)<\epsilon . \tag{2.9}
\end{equation*}
$$

From (2.8), (2.9) and the definition of the b-metric space, we get

$$
\begin{aligned}
\epsilon & \leq d\left(y_{2 m(i)}, y_{2 n(i)}\right) \\
& \leq b d\left(y_{2 m(i)}, y_{2 n(i)-2}\right)+b d\left(y_{2 n(i)-2}, y_{2 n(i)}\right) \\
& \leq b d\left(y_{2 m(i)}, y_{2 n(i)-2}\right)+b^{2} d\left(y_{2 n(i)-2}, y_{2 n(i)-1}\right)+b^{2} d\left(y_{2 n(i)-1}, y_{2 n(i)}\right) \\
& \leq \epsilon b+b^{2} d\left(y_{2 n(i)-2}, y_{2 n(i)-1}\right)+b^{2} d\left(y_{2 n(i)-1}, y_{2 n(i)}\right) .
\end{aligned}
$$

By taking the sup limit of above inequalities using (2.7), we have

$$
\begin{equation*}
\epsilon \leq \limsup _{i \rightarrow+\infty} d\left(y_{2 m(i)}, y_{2 n(i)}\right) \leq \epsilon b . \tag{2.10}
\end{equation*}
$$

Again, from (2.8) and the definition of the b-metric space, we get

$$
\begin{aligned}
\epsilon & \leq d\left(y_{2 m(i)}, y_{2 n(i)}\right) \\
& \leq b\left(\left(d\left(y_{2 m(i)}, y_{2 m(i)+1}\right)+d\left(y_{2 m(i)+}, y_{2 n(i)}\right)\right) .\right.
\end{aligned}
$$

On taking the limsup in above inequalities and using (2.7), we get

$$
\begin{equation*}
\epsilon \leq \limsup _{i \rightarrow+\infty} b d\left(y_{2 m(i)+1}, y_{2 n(i)}\right) \tag{2.11}
\end{equation*}
$$

Again, from the definition of the b-metric space, we get

$$
d\left(y_{2 m(i)}, y_{2 n(i)-1}\right) \leq b\left(\left(d\left(y_{2 m(i)}, y_{2 n(i)}\right)+d\left(y_{2 n(i)+}, y_{2 n(i)-1}\right)\right)\right.
$$

On taking the limsup in above inequalities and using (2.7) and (2.10), we get

$$
\begin{equation*}
\limsup _{i \rightarrow+\infty} b d\left(y_{2 m(i)}, y_{2 n(i)-1}\right) \leq \epsilon b^{2} \tag{2.12}
\end{equation*}
$$

Again, from the definition of the b-metric space, we get that

$$
d\left(y_{2 n(i)+1}, y_{2 n(i)-1}\right) \leq \mathrm{d}\left(y_{2 n(i)+1}, y_{2 n(i)}\right)+d\left(y_{2 n(i)}, y_{2 n(i)-1}\right) .
$$

On taking the limsup in above inequalities and using the properties of Φ, we get

$$
\begin{equation*}
\limsup _{i \rightarrow+\infty} b d\left(y_{2 n(i)+1}, y_{2 n(i)-1}\right)=0 \tag{2.13}
\end{equation*}
$$

Since $y_{2 m(i)} \in C$ and $y_{2 n(i)-1} \in D$, we have

$$
\begin{aligned}
\Phi\left(b d\left(y_{2 m(i)+1}, y_{2 n(i)}\right)\right)= & \Phi\left(b d\left(g y_{2 m(i)}, S y_{2 n(i)-1}\right)\right) \\
\leq & \Phi\left(\operatorname { m a x } \delta \left\{d\left(y_{2 m(i)}, y_{2 n(i)-1}\right), d\left(y_{2 m(i)}, y_{2 m(i)}\right),\right.\right. \\
& d\left(y_{2 n(i)-1}, S y_{2 n(i)-1}\right), \\
& \left.\left.\frac{1}{2 b} d\left(y_{2 m(i)}, g y_{2 n(i)-1}\right), \frac{1}{2 b} d\left(g y_{2 m(i)}, y_{2 n(i)-1}\right)\right\}\right) \\
= & \Phi\left(\delta \operatorname { m a x } \left\{d\left(y_{2 m(i)}, y_{2 n(i)-1}\right), d\left(y_{2 m(i)}, y_{2 m(i)+1}\right),\right.\right. \\
& d\left(y_{2 n(i)-1}, y_{2 n(i)}\right), \\
& \left.\left.\frac{1}{2 b} d\left(y_{2 m(i)}, y_{2 n(i)}\right), \frac{1}{2 b} d\left(y_{2 n(i)+1}, y_{2 n(i)-1}\right)\right\}\right) .
\end{aligned}
$$

Taking the limsup in above inequalities, and using the properties of Φ and (2.7), (2.10), (2.11), (2.12) and (2.13), we get

$$
\Phi(\epsilon) \leq \Phi\left(\epsilon \delta b^{2}\right) .
$$

Again, properties of Φ implies that $\epsilon \leq \epsilon \delta b^{2}$. Since $b^{2} \delta<1$, we have $\epsilon=0$, a contradiction. Thus $\left\{y_{n}\right\}$ is a Cauchy sequence in (Y, d).
Step 2: Existence of a common fixed point.
Since (Y, d) is a complete b-metric space and $\left\{y_{n}\right\}$ is a Cauchy sequence in Y we have $\left\{y_{n}\right\}$ converges to some $v \in Y$, that is, $\lim _{n \rightarrow+\infty} d\left(y_{n}, v\right)=0$. Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} y_{2 n-1}=\lim _{n \rightarrow+\infty} y_{2 n}=v \tag{2.14}
\end{equation*}
$$

Since $\left\{y_{2 n}\right\}$ is a sequence in C. C is closed and $y_{2 n} \rightarrow v$, we have $v \in C$. Also, since $\left\{y_{2 n+1}\right\}$ is a sequence in D, D is closed and $y_{2 n+1} \rightarrow v$, we have $v \in D$.

Now, we show that v is a fixed point of g and S. Without loss of generality, we may assume that g is continuous, since $y_{2 n} \rightarrow v$, we get $y_{2 n+1}=g y_{2 n} \rightarrow g v$. By the uniqueness of limit, we have $v=g v$.

Now, we show that $v=S v$. Since $v \in C$ and $v \in D$, we have

$$
\begin{aligned}
\Phi(b d(v, S v))= & \Phi(b d(g v, S v)) \\
\leq & \Phi(\delta \max \{d(g v, S v), d(v, g v), d(v, S v), \\
& \left.\left.\frac{1}{2 b} d(v, S v), \frac{1}{2 b} d(g v, v)\right\}\right) \\
= & \Phi(\delta d(v, S v)) .
\end{aligned}
$$

Properties of Φ implies that

$$
b d(v, S v) \leq \delta d(v, S v)
$$

the last inequality only if $d(v, S v)=0$, and hence $v=S v$.
If we take $\Phi=I[0,+\infty]$ is the identity function in Theorem 2.2 we have the following result.

Corollary 2.3. Let (Y, d) be a b-metric space and C, D be nonempty closed subsets of Y. Let $g, S: Y \rightarrow Y$ be two mappings and $C \cup D$ has a b-cyclic representation with respect to the pair (g, S). Suppose there exists $\delta>0$ with $b^{2} \delta<1$ such that for all $x, y \in Y$ with $x \in C$ and $y \in Y$, we have

$$
b d(g x, S y) \leq \delta \max \left\{d(x, y), d(x, g x), d(y, S y), \frac{1}{2 b} d(x, S y), \frac{1}{2 b} d(g x, y)\right\} .
$$

If g or S is continuous, then g and S have a common fixed point.
By taking $g=S$ in Theorem 2.2, we have the following result.
Corollary 2.4. Let (Y, d) be a b- metric space and C, D be nonempty closed subsets of Y with $Y=C \cup D$. Let $g, S: Y \rightarrow Y$ be two mappings. Suppose there exists $\delta>0$ with $b^{2} \delta<1$ such that for all $x, y \in Y$ with $x \in C$ and $y \in Y$, we have

$$
\begin{aligned}
& \Phi(b d(g x, g y)) \\
& \leq \Phi\left(\delta \max \left\{d(x, y), d(x, g x), d(y, g y), \frac{1}{2 b} d(x, g y), \frac{1}{2 b} d(g x, y)\right\}\right) .
\end{aligned}
$$

Assume that g is a continuous and cyclic map, Then g has a fixed point.
By taking $C=D=Y$ in Theorem 2.2, we have the following result.

Corollary 2.5. Let (Y, d) be a b-metric space. Let $g, S: Y \rightarrow Y$ be two mappings. Suppose there exists $\delta>0$ with $b^{2} \delta<1$ such that for all $x, y \in Y$, we have

$$
\begin{aligned}
& \Phi(b d(g x, S y)) \\
& \leq \Phi\left(\delta \max \left\{d(x, y), d(x, g x), d(y, S y), \frac{1}{2 b} d(x, S y), \frac{1}{2 b} d(g x, y)\right\}\right) .
\end{aligned}
$$

If g or S is continuous, then g and S have a common fixed point.
Example 2.6. Let $Y=\{1,2,3,4,5\}$. Define $d: Y \times Y \rightarrow[0,+\infty)$ by
$d(x, x)=0$ if $x \in\{1,2,3,4,5\}$;
$d(x, y)=1$ if $x, y \in\{1,2,3,4\}$ and $x \neq y$;
$d(x, y)=20$ if $x \in\{1,2,3\}$ and $y=5$;
$d(x, y)=20$ if $x=5$ and $y \in\{1,2,3\}$;
$d(x, y)=12$ if $x, y \in\{4,5\}$ and $x \neq y$.
Define $g: Y \rightarrow Y$ by $g(x)=1$ if $x \in\{1,2,3,4\}$ and $g(5)=4$. Also, define $S: Y \rightarrow Y$ by $S(x)=1$ if $x \in\{1,2,3,4\}$ and $S(5)=3$. Also, define $\Phi:[0,+\infty) \rightarrow[0,+\infty)$ via $\Phi(t)=\frac{t}{4}$. Let $C=\{1,3,5\}$ and $D=\{1,2,4\}$. Then
(1) (Y, d) is a complete b-metric space,
(2) $C \cup D$ has cyclic representation with respect to the pair (g, S),
(3) for every two elements $x, y \in Y$ with $x \in C$ and $y \in D$, we have

$$
\begin{aligned}
& \Phi(2 d(g x, S y)) \\
& \leq \Phi\left(\frac{1}{8} \max \left\{d(x, y), d(x, g x), d(y, S y), \frac{1}{4} d(x, S y), \frac{1}{4} d(g x, y)\right\}\right) .
\end{aligned}
$$

The proof of (1) is obvious with $b=2$. To prove part (2), since $g C=\{1,4\} \subseteq$ D and $S D=\{1\} \subseteq C$, we can say that $C \cup D$ has b-cyclic representation with respect to the pair (g, S). To prove part (3), we have the following two cases:

Case I: Let $x=1,3$ and $y \in D$. Then $g(x)=1$ and $S(y)=1$ and hence $\Phi(d(g x, S y))=0$. Thus we have

$$
\begin{aligned}
& \Phi(2 d(g x, S y)) \\
& \leq \Phi\left(\frac{1}{8} \max \left\{d(x, y), d(x, g x), d(y, S y), \frac{1}{4} d(x, S y), \frac{1}{4} d(g x, y)\right\}\right) .
\end{aligned}
$$

Case II: Let $x=5$ and $y \in D\{1,2\}$. Then $g(x)=4$ and $S(y)=1$. Hence $\Phi(2 d(g x, S y))=\Phi(2 d(4,1))=\Phi(2)=\frac{1}{2}$ and $d(x, y)=10$. Thus,

Common fixed point results under contraction of cyclic form in b-metric spaces 299

$$
\begin{aligned}
& \Phi(2 d(g x, S y))=\frac{1}{2} \leq \frac{5}{8}=\Phi\left(\frac{1}{8} d(x, y)\right) \\
& \leq \Phi\left(\frac{1}{8} \max \left\{d(x, y), d(x, g x), d(y, S y) \frac{1}{4} d(x, S y), \frac{1}{4} d(g x, y)\right\}\right) \\
& =\Phi\left(\frac{5}{2}\right)
\end{aligned}
$$

Similarly, we can deal with the case $x=5$ and $y=4$. Thus g and S satisfy all the hypothesis of Theorem 2.2. Hence g and S have a common fixed point. Here 1 is the common fixed point of g and S.

References

[1] M. Abbas, W. Shatanawi, S. Farooq and Z.D. Mitrovic, On a JH-operators pair of type (A) with applications to integral equations, J. Fixed Point Theory Appl., 22 (2020), Article number 72.
[2] K. Abodayeh, T. Qawasmeh, W. Shatanawi and A. Tallafha, E_{ϕ}-contraction and some fixed point results via modified-distance mappings in the frame of complete quasi metric spaces and applications, Inter. J. Elect. Comput. Eng., 10 (2020), 3839-3853.
[3] E. Ameer, H. Aydi, H.A. Hammad, W. Shatanawi and N. Mlaiki, On (ϕ, ψ)-metric spaces with applications, Symmetry, 12 (2020), Article number 1459.
[4] H.Aydi, E. Karapinar and W. Shatanawi, Coupled fixed point results for (ψ, ϕ)-weakly contractive contractive condition in ordered partial metric space, Comput. Math. Appl., 62 (2011), 4449-4460.
[5] H. Aydi, W. Shatanawi, M, Postolache, Z. Mustafa and N. Tahat, Theorems for Boyd-Wong-type contractions in ordered metric spaces, Abstr. Appl. Anal., 2012 (2012), Article number 359054.
[6] A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26-37.
[7] A. Bataihah, W. Shatanawi, T. Qawasmeh and R. Hatamleh, On H-Simulation functions and fixed point results in the setting of wt-distance mappings with application on matrix equations, Mathematics, 8 (2020), Article number 837.
[8] A. Bataihah, W. Shatanawi and A. Tallafha, Fixed point results with simulation functions, Nonlinear Funct. Anal. Appl., 25 (2020), 13-23.
[9] A. Bataihah, A. Tallafha and W. Shatanawi, Fixed point results with Ω-distance by utilizing simulation functions, Italian J. Pure and Appl. Math., 43 (2020), 185-196.
[10] Y.J. Cho, B.E. Rhoades, R. Saadait, B. Samet and W. Shatanawi Nonlinear coupled fixed point theorems in ordered generalized metric space with integral type, Fixed Point Theory Appl., 2012. Article ID (2012)
[11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univa. Ostra., 1 (1993), 5-11.
[12] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric space, Atti Sem. Mat. Uniu. Modena, 46 (1998), 263-276.
[13] U. Kadak, On the classical sets of sequences with fuzzy b-metric, Gen. Math. Notes. 23(1) (2014), 89-108.
[14] N. Kir and H. Kiziltun, On some well Know fixed point theorems in b-metric space, Turk. J. Anal. Number Theory, 1 (2013), 13-16.
[15] W.A. Kirk, S.P. Srinavasan and P. Veeramanyi, Fixed points for mapping satisfying cyclical conditions, Fixed Point Theory Appl., 4 (2003), 79-89.
[16] A. Khan, T. Abdeljawad, W. Shatanawi and H. Khan, Fixed point theorems for Quadruple self-mappings satisfying integral type inequalities, Filoma, 34(3) (2020), 905-917, https://doi.org/10.2298/FIL2003905K
[17] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9.
[18] K. Kukic, W. Shatanawi and M.G. Filipovic, Khan and Ciric contraction princples in almost b-metric space, U.P.B. Sci. Bull., Series A, 82, Iss. 1, (2020).
[19] A. Mukheimer, N. Mlaiki, K. Abodayeh and W.Shatanawi, New theorems on extended b-metric spaces under new contractions, Nonlinear Anal, Model. Con., 24(6) (2019), 870-883.
[20] M. Pcurar and I.A. Rus, Fixed point theory for cyclic ϕ-contractions, Nonlinear Anal., 72 (2010), 1181-1187.
[21] G. Petruel, Cyclic representations and periodic points, Stud. Univ. Babe-Bolyai, Math., 50 (2005), 107-112.
[22] H. Qawaqneh, M.S.M. Noorani and W. Shatanawi, Fixed point theorems for (α, k, θ)-contractive multi-valued mapping in b-metric space and applications, Int. J. Math. Comput. Sci., 14(1) (2019), 263-283.
[23] H. Qawaqneh, M.S.M. Noorani, S. Shatanawi, H. Aydi and H. Alsamir, Fixed point results for multi-valued contractions in b-metric spaces and an application, Mathematics, 7 (2019), Article number 132.
[24] T. Qawasmeh, A. Tallafha and W. Shatanawi, Fixed and common fixed point theorems through modified ω-distance mappings, Nonlinear Funct. Anal. Appl., 24 (2019), 221239.
[25] T. Qawasmeh, A. Tallafha and W. Shatanawi, Fixed point theorems through modified w-distance and application to nontrivial equations, Axioms, 8 (2019), Article Number 57.
[26] K.P.R. Rao, W. Shatanawi, G.N.V. Kishore, K. Abodayeh and D.R. Prasad, Existeness and uniqeness of Suzuki type results in S_{b} metric spaces with applications to integral equations, Nonlinear Funct. Anal. Appl., 23 (2018), 225-245.
[27] J.R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized $(\psi, \phi)_{s}$-contractive mappings in ordered bmetric spaces, Fixed Point Theory Appl., 2013:159 (2013).
[28] S. Sedghi, N. Shobkolaei, J. Rezaei Roshan and W. Shatanawi, Coupled fixed point theorems in G_{b}-metric spaces, Matematicki Vesnik, 66(2) (2014), 190-201.
[29] W. Shatnawi and Postolache Mihai, Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, A springer open journal, (2013).
[30] W. Shatanawi, and S. Manro, Fixed point results for cyclic (ψ, ϕ, A, B)-contraction in partial metric space, Fixed point Theory Appl., 2012 (2012). Article ID. 165.
[31] W. Shatanawi and B. Samet, On (ψ, ϕ)-weakly contractive condition in partially ordered metric space, Comput. Math. Appl., 62 (2011), 3204-3214.
[32] W. Shatanawi, Some coincidence point result in cone metric space, Math. Comput .Modle., 55 (2012), 2023-2028.
[33] W. Shatanawi, Some fixed point theorems in ordered G-metric space and applications, Abstr. Appl. Anal., 2011 (2011), Article ID 126205.
[34] W. Shatanawi, On w-compatible mappings and common coupled coincidence point in cone metric spaces, Appl. Math. Lett., 25 (2012), 925-931.
[35] W. Shatanawi, Some fixed point results for a generalized ψ-weak contraction mappings in orbitally metric spaces, Chaos, Solitons and Fractals, 45 (2012), 520-526.
[36] W. Shatanawi, A. Bataihah and A. Tallafha, Four-step iteration scheme to approximate fixed point for weak contractions, Comput. Materials Continua CMC, 64 (2020), 14911504.
[37] W. Shatanawi, E. Karapnar and H. Aydi, Coupled coincidence points in partially ordered cone metric spaces with a c-distance, J. Appl. Math., 2012 (2012), Article number 312078.
[38] W. Shatanawi, Z. Mustafa and N. Tahat, Some coincidence point theorems for nonlinear contraction in ordered metric spaces, Fixed Point Theory Appl., 2011 (2011), Article number 68.
[39] W. Shatanawi and A. Pitea, Fixed and coupled fixed point theorems of Ω-distance for nonlinear contraction, Fixed Point Theory Appl., 2013(11) (2013), DOI: 10.1186/1687-1812-2013-275.
[40] W. Shatanawi, A. Pitea and R. Lazovi, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl., 2013:120 (2013).
[41] W. Shatanawi and M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory Appl., 2013 (2013), Article number 271.
[42] W. Shatanawi, V.C. Rajic, S.C. Radenovic and A. Al-Rawashdeh, Mizoguchi-Takahashitype theorems in tvs-cone metric spaces, Fixed Point Theory Appl., 2012 (2012), Article number 106.

[^0]: ${ }^{0}$ Received September 6, 2020. Revised December 9, 2020. Accepted February 5, 2021.
 ${ }^{0} 2010$ Mathematics Subject Classification: 54H25, 47H10, 34B14.
 ${ }^{0}$ Keywords: Metric spaces, common fixed point, altering distance function, almost contraction, b-metric spaces.
 ${ }^{0}$ Corresponding author: A. Rabaiah(ayatrabaiah@yahoo.com).

