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Abstract. Three common fixed point theorems for weakly compatible mappings satisfying

three classes of contractive inequalities of integral type are proved. Three examples are

included. The results obtained in this paper extend and improve a few results existing in

literature.

1. Introduction and preliminaries

Throughout this paper, we assume that R+ = [0,+∞), N0 = N∪{0}, where
N denotes the set of all positive integers and
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• Φ1 =
{
ϕ | ϕ : R+ → R+ satisfies that ϕ is Lebesgue integrable,

summable on each compact subset of R+ and
∫ ε
0 ϕ(t)dt > 0 for each

ε > 0
}
,

• Φ2 =
{
α | α : R+ → [0, 1) satisfies that lim sups→t α(s) < 1 for each

t ∈ R+
}
,

• Φ3 =
{
α | α ∈ Φ2 and lim sups→+∞ α(s) < 1

}
.

In 2002, Branciari [2] was the first to introduce the concept of contractive
mapping of integral type and obtained the following fixed point result for the
mapping.

Theorem 1.1. ([2]) Let T be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(Tx,Ty)

0
ϕ(t)dt ≤ c

∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X,

where c ∈ (0, 1) is a constant and ϕ ∈ Φ1. Then T has a unique fixed point
a ∈ X such that limn→∞ T

nx = a for each x ∈ X.

Afterwards several researchers in [1, 3, 5, 6, 7, 8, 9, 10, 11, 12] discussed
the existence of fixed points and common fixed points for a few contractive
mappings of integral type. In particular, Rhoades [11] and Liu et al. [9] proved
the following fixed point theorems.

Theorem 1.2. ([11]) Let T be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(Tx,Ty)

0
ϕ(t)dt ≤ c

∫ m(x,y)

0
ϕ(t)dt, ∀x, y ∈ X,

where c ∈ (0, 1) is a constant, ϕ ∈ Φ1 and

m(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
[d(x, Ty) + d(y, Tx)]

}
.

Then T has a unique fixed point a ∈ X such that limn→∞ T
nx = a for each

x ∈ X.

Theorem 1.3. ([9]) Let T be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(Tx,Ty)

0
ϕ(t)dt ≤ α

(
d(x, y)

) ∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X,

where (ϕ, α) ∈ Φ1 × Φ2. Then T has a unique fixed point a ∈ X such that
limn→∞ T

nx = a for each x ∈ X.
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The aim of this paper is to establish three common fixed point theorems for
weakly compatible mappings satisfying three classes of contractive inequali-
ties of integral type. Three examples are constructed to illustrate that the
results obtained in this paper generalize Theorems 1.1 and 1.2 and differ from
Theorem 1.3.

Definition 1.4. ([4]) Let (X, d) be a metric space and A,S: X → X be two
mappings. A and S are called weakly compatible if they commute at their
coincidence points.

Lemma 1.5. ([9]) Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence with
limn→∞ rn = a. Then

lim
n→∞

∫ rn

0
ϕ(t)dt =

∫ a

0
ϕ(t)dt.

2. Common fixed point theorems

Our main results are as follows:

Theorem 2.1. Let A,B, S and T be self mappings in a metric space (X, d)
such that

{A, T} and {B,S} are weakly compatible; (2.1)

T (X) ⊆ B(X) and S(X) ⊆ A(X); (2.2)

one of A(X), B(X), S(X) and T (X) is complete; (2.3)∫ d(Tx,Sy)

0
ϕ(t)dt ≤ α

(
d(x, y)

) ∫ M1(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (2.4)

where (ϕ, α) ∈ Φ1 × Φ3 and for all x, y ∈ X,

M1(x, y) = max

{
d(Ax,By), d(Ax, Tx), d(By, Sy),

1

2
[d(Ax, Sy) + d(Tx,By)],

1 + d(Ax,By)

1 + d(By, Sy)
d(Ax, Tx),

1 + d(Ax,By)

1 + d(Ax, Tx)
d(By, Sy),

d2(Ax, Tx)

1 + d(Tx, Sy)
,
d2(By, Sy)

1 + d(Tx, Sy)
,

1 + d(Ax, Sy) + d(Tx,By)

1 + d(Ax,By) + d(Tx, Sy)
d(Ax, Tx),

1 + d(Ax, Sy) + d(Tx,By)

1 + d(Ax,By) + d(Tx, Sy)
d(By, Sy)

}
.

(2.5)
Then, we have the following statements:
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(1) There exist w, u ∈ X such that Aw = Tw = Bu = Su;
(2) A,B, S and T have a unique common fixed point in X if T and A as

well as S and B are weakly compatible.

Proof. Let x0 ∈ X. It follows from (2.2) that there exist two sequences
{xn}n∈N0 and {yn}n∈N in X such that

y2n+1 = Bx2n+1 = Tx2n, y2n+2 = Ax2n+2 = Sx2n+1, ∀n ∈ N0. (2.6)

Put dn = d(yn, yn+1) for each n ∈ N.
Assume that d2n < d2n+1 for some n ∈ N. Because of (2.4)-(2.6) and

(ϕ, α) ∈ Φ1 × Φ3, we derive that

M1(x2n, x2n+1)

= max

{
d(Ax2n, Bx2n+1), d(Ax2n, Tx2n), d(Bx2n+1, Sx2n+1),

1

2
[d(Ax2n, Sx2n+1) + d(Tx2n, Bx2n+1)],

1 + d(Ax2n, Bx2n+1)

1 + d(Bx2n+1, Sx2n+1)
d(Ax2n, Tx2n),

1 + d(Ax2n, Bx2n+1)

1 + d(Ax2n, Tx2n)
d(Bx2n+1, Sx2n+1),

d2(Ax2n, Tx2n)

1 + d(Tx2n, Sx2n+1)
,
d2(Bx2n+1, Sx2n+1)

1 + d(Tx2n, Sx2n+1)
,

1 + d(Ax2n, Sx2n+1) + d(Tx2n, Bx2n+1)

1 + d(Ax2n, Bx2n+1) + d(Tx2n, Sx2n+1)
d(Ax2n, Tx2n),

1 + d(Ax2n, Sx2n+1) + d(Tx2n, Bx2n+1)

1 + d(Ax2n, Bx2n+1) + d(Tx2n, Sx2n+1)
d(Bx2n+1, Sx2n+1)

}
= max

{
d(y2n, y2n+1), d(y2n, y2n+1), d(y2n+1, y2n+2),

1

2
[d(y2n, y2n+2) + d(y2n+1, y2n+1)],

1 + d(y2n, y2n+1)

1 + d(y2n+1, y2n+2)
d(y2n, y2n+1),

1 + d(y2n, y2n+1)

1 + d(y2n, y2n+1)
d(y2n+1, y2n+2),

d2(y2n, y2n+1)

1 + d(y2n+1, y2n+2)
,
d2(y2n+1, y2n+2)

1 + d(y2n+1, y2n+2)
,

1 + d(y2n, y2n+2) + d(y2n+1, y2n+1)

1 + d(y2n, y2n+1) + d(y2n+1, y2n+2)
d(y2n, y2n+1),

1 + d(y2n, y2n+2) + d(y2n+1, y2n+1)

1 + d(y2n, y2n+1) + d(y2n+1, y2n+2)
d(y2n+1, y2n+2)

}
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= max

{
d2n, d2n, d2n+1,

1

2
d(y2n, y2n+2),

1 + d2n
1 + d2n+1

d2n,
1 + d2n
1 + d2n

d2n+1,

d22n
1 + d2n+1

,
d22n+1

1 + d2n+1
,
1 + d(y2n, y2n+2)

1 + d2n + d2n+1
d2n,

1 + d(y2n, y2n+2)

1 + d2n + d2n+1
d2n+1

}
= max{d2n, d2n+1} = d2n+1

and

0 <

∫ d2n+1

0
ϕ(t)dt =

∫ d(Tx2n,Sx2n+1)

0
ϕ(t)dt

≤ α
(
d(x2n, x2n+1)

) ∫ M1(x2n,x2n+1)

0
ϕ(t)dt

= α
(
d(x2n, x2n+1)

) ∫ d2n+1

0
ϕ(t)dt <

∫ d2n+1

0
ϕ(t)dt,

which is a contradiction. Hence

d2n+1 ≤ d2n = M1(x2n, x2n+1), ∀n ∈ N.
Similarly,

d2n ≤ d2n−1 = M1(x2n, x2n−1), ∀n ∈ N.
That is, for all n ∈ N,

dn+1 ≤ dn, d2n = M1(x2n, x2n+1), d2n−1 = M1(x2n, x2n−1), (2.7)

which implies that {dn}nεN is nonincreasing sequence and there exists a con-
stant c with limn→∞ dn = c ≥ 0.

Suppose that c > 0. In light of (2.4), (2.7), (ϕ, α) ∈ Φ1 × Φ3 and Lemma
1.5, we get that

0 <

∫ c

0
ϕ(t)dt = lim sup

n→∞

∫ d2n+1

0
ϕ(t)dt

= lim sup
n→∞

∫ d(Tx2n,Sx2n+1)

0
ϕ(t)dt

≤ lim sup
n→∞

[
α
(
d(x2n, x2n+1)

) ∫ M1(x2n,x2n+1)

0
ϕ(t)dt

]
= lim sup

n→∞

[
α
(
d(x2n, x2n+1)

) ∫ d2n

0
ϕ(t)dt

]
≤ lim sup

n→∞
α
(
d(x2n, x2n+1)

)
lim sup
n→∞

∫ d2n

0
ϕ(t)dt

<

∫ c

0
ϕ(t)dt,

which is absurd. Thus c = 0, which means that
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lim
n→∞

dn = 0. (2.8)

Next we prove that {yn}n∈N is a Cauchy sequence. Because of (2.8), it is
sufficient to verify that {y2n}n∈N is a Cauchy sequence.

Suppose that {y2n}n∈N is not a Cauchy sequence. It follows that there exist
ε > 0 and two subsequences {y2m(k)}k∈N and {y2n(k)}k∈N of {y2n}n∈N with
2m(k) > 2n(k) > 2k satisfying

d(y2n(k), y2m(k)) ≥ ε, ∀k ∈ N, (2.9)

where 2m(k) is the least integer exceeding 2n(k) satisfying (2.9). It follows
that

d(y2n(k), y2m(k)−2) < ε, ∀k ∈ N,
which together with (2.9) and the triangle inequality give that

ε ≤ d(y2n(k), y2m(k))

≤ d(y2n(k), y2m(k)−2) + d(y2m(k)−2, y2m(k)−1) + d(y2m(k)−1, y2m(k))

< ε+ d2m(k)−2 + d2m(k)−1, ∀k ∈ N
(2.10)

and

|d(y2n(k), y2m(k)−1)− d(y2n(k), y2m(k))| ≤ d2m(k)−1, ∀k ∈ N;

|d(y2n(k)+1, y2m(k))− d(y2n(k), y2m(k))| ≤ d2n(k), ∀k ∈ N;

|d(y2n(k)+1, y2m(k)−1)− d(y2n(k), y2m(k)−1)| ≤ d2n(k), ∀k ∈ N.
(2.11)

Letting k →∞ in (2.10) and (2.11) and using (2.8), we deduce that

lim
k→∞

d(y2n(k), y2m(k)) = lim
k→∞

d(y2n(k), y2m(k)−1)

= lim
k→∞

d(y2n(k)+1, y2m(k))

= lim
k→∞

d(y2n(k)+1, y2m(k)−1) = ε.

(2.12)

In view of (2.4), (2.5), (2.12), (ϕ, α) ∈ Φ1×Φ3 and Lemma 1.5, we obtain that

M1(x2n(k), x2m(k)−1)

= max

{
d(Ax2n(k), Bx2m(k)−1), d(Ax2n(k), Tx2n(k)), d(Bx2m(k)−1, Sx2m(k)−1),

1

2
[d(Ax2n(k), Sx2m(k)−1) + d(Tx2n(k), Bx2m(k)−1)],

1 + d(Ax2n(k), Bx2m(k)−1)

1 + d(Bx2m(k)−1, Sx2m(k)−1)
d(Ax2n(k), Tx2n(k)),

1 + d(Ax2n(k), Bx2m(k)−1)

1 + d(Ax2n(k), Tx2n(k))
d(Bx2m(k)−1, Sx2m(k)−1),
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d2(Ax2n(k), Tx2n(k))

1 + d(Tx2n(k), Sx2m(k)−1)
,
d2(Bx2m(k)−1, Sx2m(k)−1)

1 + d(Tx2n(k), Sx2m(k)−1)
,

1 + d(Ax2n(k), Sx2m(k)−1) + d(Tx2n(k), Bx2m(k)−1)

1 + d(Ax2n(k), Bx2m(k)−1) + d(Tx2n(k), Sx2m(k)−1)

× d(Ax2n(k), Tx2n(k)),

1 + d(Ax2n(k), Sx2m(k)−1) + d(Tx2n(k), Bx2m(k)−1)

1 + d(Ax2n(k), Bx2m(k)−1) + d(Tx2n(k), Sx2m(k)−1)

× d(Bx2m(k)−1, Sx2m(k)−1)

}
= max

{
d(y2n(k), y2m(k)−1), d(y2n(k), y2n(k)+1), d(y2m(k)−1, y2m(k)),

1

2
[d(y2n(k), y2m(k)) + d(y2n(k)+1, y2m(k)−1)],

1 + d(y2n(k), y2m(k)−1)

1 + d(y2m(k)−1, y2m(k))
d(y2n(k), y2n(k)+1),

1 + d(y2n(k), y2m(k)−1)

1 + d(y2n(k), y2n(k)+1)
d(y2m(k)−1, y2m(k)),

d2(y2n(k), y2n(k)+1)

1 + d(y2n(k)+1, y2m(k))
,
d2(y2m(k)−1, y2m(k))

1 + d(y2n(k)+1, y2m(k))
,

1 + d(y2n(k), y2m(k)) + d(y2n(k)+1, y2m(k)−1)

1 + d(y2n(k), y2m(k)−1) + d(y2n(k)+1, y2m(k))
d(y2n(k), y2n(k)+1),

1 + d(y2n(k), y2m(k)) + d(y2n(k)+1, y2m(k)−1)

1 + d(y2n(k), y2m(k)−1) + d(y2n(k)+1, y2m(k))
d(y2m(k)−1, y2m(k))

}
→ max

{
ε, 0, 0,

1

2
(ε+ ε), 0, 0, 0, 0, 0, 0

}
= ε as k →∞

and

0 <

∫ ε

0
ϕ(t)dt = lim sup

k→∞

∫ d(y2n(k)+1,y2m(k))

0
ϕ(t)dt

= lim sup
k→∞

∫ d(Tx2n(k),Sx2m(k)−1)

0
ϕ(t)dt

≤ lim sup
k→∞

[
α
(
d(x2n(k), x2m(k)−1)

) ∫ M1(x2n(k),x2m(k)−1)

0
ϕ(t)dt

]
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≤ lim sup
k→∞

α
(
d(x2n(k), x2m(k)−1)

)
lim sup
k→∞

∫ M1(x2n(k),x2m(k)−1)

0
ϕ(t)dt

<

∫ ε

0
ϕ(t)dt,

which is impossible. Hence {yn}n∈N is a Cauchy sequence. Without loss
of generality, we suppose that A(X) is complete. Obviously, {y2n}n∈N is a
Cauchy sequence in A(X). Consequently, there exists (z, w) ∈ A(X) × X
with limn→∞ y2n = z = Aw. It is easy to see that

z = lim
n→∞

yn

= lim
n→∞

Tx2n

= lim
n→∞

Bx2n+1

= lim
n→∞

Sx2n−1

= lim
n→∞

Ax2n.

(2.13)

Suppose that Tw 6= z. Note that (2.4), (2.5), (2.13), (ϕ, α) ∈ Φ1 × Φ3 and
Lemma 1.5 imply that

M1(w, x2n+1)

= max

{
d(Aw,Bx2n+1), d(Aw, Tw), d(Bx2n+1, Sx2n+1),

1

2
[d(Aw,Sx2n+1) + d(Tw,Bx2n+1)],

1 + d(Aw,Bx2n+1)

1 + d(Bx2n+1, Sx2n+1)
d(Aw, Tw),

1 + d(Aw,Bx2n+1)

1 + d(Aw, Tw)
d(Bx2n+1, Sx2n+1),

d2(Aw, Tw)

1 + d(Tw, Sx2n+1)
,
d2(Bx2n+1, Sx2n+1)

1 + d(Tw, Sx2n+1)
,

1 + d(Aw,Sx2n+1) + d(Tw,Bx2n+1)

1 + d(Aw,Bx2n+1) + d(Tw, Sx2n+1)
d(Aw, Tw),

1 + d(Aw,Sx2n+1) + d(Tw,Bx2n+1)

1 + d(Aw,Bx2n+1) + d(Tw, Sx2n+1)
d(Bx2n+1, Sx2n+1)

}
→ max

{
d(Aw, z), d(Aw, Tw), d(z, z),

1

2
[d(Aw, z) + d(Tw, z)],

1 + d(Aw, z)

1 + d(z, z)
d(Aw, Tw),

1 + d(Aw, z)

1 + d(Aw, Tw)
d(z, z),
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d2(Aw, Tw)

1 + d(Tw, z)
,

d2(z, z)

1 + d(Tw, z)
,
1 + d(Aw, z) + d(Tw, z)

1 + d(Aw, z) + d(Tw, z)
d(Aw, Tw),

1 + d(Aw, z) + d(Tw, z)

1 + d(Aw, z) + d(Tw, z)
d(z, z)

}
= max

{
0, d(z, Tw), 0,

1

2
d(Tw, z), d(z, Tw), 0,

d2(z, Tw)

1 + d(Tw, z)
, 0, d(z, Tw), 0

}
= d(Tw, z) as n→∞

and

0 <

∫ d(Tw,z)

0
ϕ(t)dt = lim sup

n→∞

∫ d(Tw,Sx2n+1)

0
ϕ(t)dt

≤ lim sup
n→∞

[
α
(
d(w, x2n+1)

) ∫ M1(w,x2n+1)

0
ϕ(t)dt

]
≤ lim sup

n→∞
α
(
d(w, x2n+1)

)
lim sup
n→∞

∫ M1(w,x2n+1)

0
ϕ(t)dt

<

∫ d(Tw,z)

0
ϕ(t)dt,

which is a contradiction. Hence Tw = z. It follows from (2.2) that there exists
a point u ∈ X with z = Bu = Tw. Suppose that Su 6= z. In light of (2.4),
(2.5), (2.13), (ϕ, α) ∈ Φ1 × Φ3 and Lemma 1.5, we deduce that

M1(x2n, u)

= max

{
d(Ax2n, Bu), d(Ax2n, Tx2n), d(Bu, Su),

1

2
[d(Ax2n, Su) + d(Tx2n, Bu)],

1 + d(Ax2n, Bu)

1 + d(Bu, Su)
d(Ax2n, Tx2n),

1 + d(Ax2n, Bu)

1 + d(Ax2n, Tx2n)
d(Bu, Su),

d2(Ax2n, Tx2n)

1 + d(Tx2n, Su)
,

d2(Bu, Su)

1 + d(Tx2n, Su)
,

1 + d(Ax2n, Su) + d(Tx2n, Bu)

1 + d(Ax2n, Bu) + d(Tx2n, Su)
d(Ax2n, Tx2n),

1 + d(Ax2n, Su) + d(Tx2n, Bu)

1 + d(Ax2n, Bu) + d(Tx2n, Su)
d(Bu, Su)

}
→ max

{
d(z,Bu), d(z, z), d(Bu, Su),

1

2
[d(z, Su) + d(z,Bu)],

1 + d(z,Bu)

1 + d(Bu, Su)
d(z, z),

1 + d(z,Bu)

1 + d(z, z)
d(Bu, Su),
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d2(z, z)

1 + d(z, Su)
,
d2(Bu, Su)

1 + d(z, Su)
,
1 + d(z, Su) + d(z,Bu)

1 + d(z,Bu) + d(z, Su)
d(z, z),

1 + d(z, Su) + d(z,Bu)

1 + d(z,Bu) + d(z, Su)
d(Bu, Su)

}
= max

{
0, 0, d(z, Su),

1

2
d(z, Su), 0, d(z, Su), 0,

d2(z, Su)

1 + d(z, Su)
, 0, d(z, Su)

}
= d(z, Su) as n→∞

and

0 <

∫ d(z,Su)

0
ϕ(t)dt = lim sup

n→∞

∫ d(Tx2n,Su)

0
ϕ(t)dt

≤ lim sup
n→∞

[
α
(
d(x2n, u)

) ∫ M1(x2n,u)

0
ϕ(t)dt

]
≤ lim sup

n→∞
α
(
d(x2n, u)

)
lim sup
n→∞

∫ M1(x2n,u)

0
ϕ(t)dt

<

∫ d(z,Su)

0
ϕ(t)dt,

which is absurd. Hence Su = z.

Next we prove (2). By means of (2.1), we know that Az = ATw = TAw =
Tz and Bz = BSu = SBu = Sz. Assume that Tz 6= Sz. It follows from
(2.4), (2.5) and (ϕ, α) ∈ Φ1 × Φ3 that

M1(z, z)

= max

{
d(Az,Bz), d(Az, Tz), d(Bz, Sz),

1

2
[d(Az, Sz) + d(Tz,Bz)],

1 + d(Az,Bz)

1 + d(Bz, Sz)
d(Az, Tz),

1 + d(Az,Bz)

1 + d(Az, Tz)
d(Bz, Sz),

d2(Az, Tz)

1 + d(Tz, Sz)
,
d2(Bz, Sz)

1 + d(Tz, Sz)
,
1 + d(Az, Sz) + d(Tz,Bz)

1 + d(Az,Bz) + d(Tz, Sz)
d(Az, Tz),

1 + d(Az, Sz) + d(Tz,Bz)

1 + d(Az,Bz) + d(Tz, Sz)
d(Bz, Sz)

}
= max

{
d(Tz, Sz), 0, 0,

1

2
[d(Tz, Sz) + d(Tz, Sz)], 0, 0, 0, 0, 0, 0

}
= d(Tz, Sz)

and
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0 <

∫ d(Tz,Sz)

0
ϕ(t)dt ≤ α

(
d(z, z)

) ∫ M1(z,z)

0
ϕ(t)dt

= α(0)

∫ d(Tz,Sz)

0
ϕ(t)dt <

∫ d(Tz,Sz)

0
ϕ(t)dt,

which is a contradiction. Hence Tz = Sz. That is, Az = Tz = Bz = Sz.
Suppose that Tz 6= z. On account of (2.4), (2.5) and (ϕ, α) ∈ Φ1 × Φ3, we

attain that

M1(z, u)

= max

{
d(Az,Bu), d(Az, Tz), d(Bu, Su),

1

2
[d(Az, Su) + d(Tz,Bu)],

1 + d(Az,Bu)

1 + d(Bu, Su)
d(Az, Tz),

1 + d(Az,Bu)

1 + d(Az, Tz)
d(Bu, Su),

d2(Az, Tz)

1 + d(Tz, Su)
,
d2(Bu, Su)

1 + d(Tz, Su)
,
1 + d(Az, Su) + d(Tz,Bu)

1 + d(Az,Bu) + d(Tz, Su)
d(Az, Tz),

1 + d(Az, Su) + d(Tz,Bu)

1 + d(Az,Bu) + d(Tz, Su)
d(Bu, Su)

}
= max

{
d(Tz, z), 0, 0,

1

2
[d(Tz, z) + d(Tz, z)], 0, 0, 0, 0, 0, 0

}
= d(Tz, z)

and

0 <

∫ d(Tz,z)

0
ϕ(t)dt =

∫ d(Tz,Su)

0
ϕ(t)dt ≤ α

(
d(z, u)

) ∫ M1(z,u)

0
ϕ(t)dt

= α
(
d(z, u)

) ∫ d(Tz,z)

0
ϕ(t)dt <

∫ d(Tz,z)

0
ϕ(t)dt,

which is ridiculous. Therefore, Tz = z, which implies that z is a common fixed
point of A,B, S and T .

Suppose that A,B, S and T have another common fixed point b ∈ X \ {z}.
It follows from (2.4), (2.5) and (ϕ, α) ∈ Φ1 × Φ3 that

M1(b, z)

= max

{
d(Ab,Bz), d(Ab, Tb), d(Bz, Sz),

1

2
[d(Ab, Sz) + d(Tb,Bz)],

1 + d(Ab,Bz)

1 + d(Bz, Sz)
d(Ab, Tb),

1 + d(Ab,Bz)

1 + d(Ab, Tb)
d(Bz, Sz),
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d2(Ab, Tb)

1 + d(Tb, Sz)
,
d2(Bz, Sz)

1 + d(Tb, Sz)
,
1 + d(Ab, Sz) + d(Tb,Bz)

1 + d(Ab,Bz) + d(Tb, Sz)
d(Ab, Tb),

1 + d(Ab, Sz) + d(Tb,Bz)

1 + d(Ab,Bz) + d(Tb, Sz)
d(Bz, Sz)

}
= max

{
d(b, z), 0, 0,

1

2
[d(b, z) + d(b, z)], 0, 0, 0, 0, 0, 0

}
= d(b, z)

and

0 <

∫ d(b,z)

0
ϕ(t)dt

=

∫ d(Tb,Sz)

0
ϕ(t)dt

≤ α
(
d(b, z)

) ∫ M1(b,z)

0
ϕ(t)dt

= α
(
d(b, z)

) ∫ d(b,z)

0
ϕ(t)dt

<

∫ d(b,z)

0
ϕ(t)dt,

which is a contradiction. Hence A,B, S and T have a unique common fixed
point in X. This completes the proof. �

Similar to the proof of Theorem 2.1, we have the following results and omit
their proofs.

Theorem 2.2. Let A,B, S and T be self mappings in a metric space (X, d)
satisfying (2.1)-(2.3) and∫ d(Tx,Sy)

0
ϕ(t)dt ≤ α

(
d(x, y)

) ∫ M2(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (2.14)

where (ϕ, α) ∈ Φ1 × Φ3 and

M2(x, y) = max

{
d(Ax,By), d(Ax, Tx), d(By, Sy),

1

2
[d(Ax, Sy) + d(Tx,By)],

1 + d(Tx,By)

2 + d(Tx, Sy)
d(Ax, Sy),

1 + d(Ax, Sy)

2 + d(Tx, Sy)
d(Tx,By),

1 + d(Ax, Sy) + d(Tx,By)

1 + 2d(Tx, Sy)
d(Ax, Tx),

1 + d(Ax, Sy) + d(Tx,By)

1 + 2d(Tx, Sy)
d(By, Sy)

}
, ∀x, y ∈ X.
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Then (1) and (2) of Theorem 2.1 hold.

Theorem 2.3. Let A,B, S and T be self mappings in a metric space (X, d)
satisfying (2.1)-(2.3) and∫ d(Tx,Sy)

0
ϕ(t)dt ≤ α

(
d(x, y)

) ∫ M3(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (2.15)

where (ϕ, α) ∈ Φ1 × Φ3 and

M3(x, y) = max

{
d(Ax,By), d(Ax, Tx), d(By, Sy),

1

2
[d(Ax, Sy) + d(Tx,By)],

1 + d(Tx,By)

1 + 2d(Tx, Sy)
d(Ax, Tx),

1 + d(Ax, Sy)

1 + 2d(Tx, Sy)
d(By, Sy),

1 + d(Ax, Sy)d(Tx,By)

1 + d(Ax,By)d(Tx, Sy)
d(Ax, Tx),

1 + d(Ax, Sy)d(Tx,By)

1 + d(Ax,By)d(Tx, Sy)
d(By, Sy)

}
, ∀x, y ∈ X.

Then (1) and (2) of the Theorem 2.1 hold.

3. Examples

Now we construct three examples with uncountably many points to explain
the common fixed point theorems obtained in Section 2.

Remark 3.1. Theorems 2.1-2.3 are generalizations of Theorem 1.2, which, in
turns, extends Theorem 1.1. Examples 3.2-3.4 show that Theorems 2.1- 2.3
extend substantially Theorem 1.1 and differ from Theorem 1.3.

Example 3.2. Let X = R+ be endowed with the Euclidean metric d(x, y) =
|x − y| for all x, y ∈ X. Let A,B, S, T : X → X, α : R+ → [0, 1) and
ϕ : R+ → R+ be defined by

Ax =
1

2
x+

1

2
, Bx = x3, Sx = 1, ∀x ∈ X,

Tx =

{
1, ∀x ∈ X \

{
1
4

}
,

15
16 , x = 1

4 ,

α(t) =
1 + t

2 + 3t
, ϕ(t) = 2t, ∀t ∈ R+.

Evidently, (2.1)-(2.3) hold and α(t) ∈ (13 ,
1
2 ], for all t ∈ R+. Let x, y ∈ X. In

order to verify (2.4), we consider two cases as follows:
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Case 1. x ∈ X \
{
1
4

}
. It is obvious that∫ d(Tx,Sy)

0
ϕ(t)dt = 0 ≤ α

(
d(x, y)

) ∫ M1(x,y)

0
ϕ(t)dt;

Case 2. x = 1
4 . Clearly

M1(x, y) ≥ d(Ax, Tx) =

∣∣∣∣58 − 15

16

∣∣∣∣ =
5

16

and ∫ d(Tx,Sy)

0
ϕ(t)dt =

∫ 1
16

0
ϕ(t)dt =

1

256
<

1

3
· 25

256

≤ α
(
d

(
1

4
, y

))∫ 5
16

0
ϕ(t)dt

≤ α
(
d(x, y)

) ∫ M1(x,y)

0
ϕ(t)dt.

That is, (2.4) holds. It follows from Theorem 2.1 that the mappings A,B, S
and T have a unique common fixed point 1 ∈ X.

Note that Theorem 1.3 generalizes Theorem 1.1. Now we need to prove
that Theorem 1.3 is useless in proving the existence of fixed points of T in X.

Suppose that there exists (ϕ, α) ∈ Φ1 ×Φ2 satisfies the conditions of Theo-
rem 1.3. By Theorem 1.3, we get that

0 <

∫ 1
16

0
ϕ(t)dt =

∫ d(T 1
4
,T 5

16
)

0
ϕ(t)dt

≤ α
(
d

(
1

4
,

5

16

))∫ d( 1
4
, 5
16

)

0
ϕ(t)dt <

∫ 1
16

0
ϕ(t)dt,

which is a contradiction.

Example 3.3. Let X = R+ be endowed with the Euclidean metric d(x, y) =
|x − y| for all x, y ∈ X. Let A,B, S, T : X → X, α : R+ → [0, 1) and
ϕ : R+ → R+ be defined by

Bx =
1

5
x2, Sx = 0, ∀x ∈ X,

Ax =

{
0, ∀x ∈ X \

{
1
6

}
,

1
3 , x = 1

6 ,
Tx =

{
0, ∀x ∈ X \

{
1
6

}
,

1
12 , x = 1

6 ,

α(t) =
t2 + 4t+ 3

5t2 + 5t+ 4
, ϕ(t) = 3t2, ∀t ∈ R+.

Obviously, (2.1)-(2.3) hold and α(t) ∈ (15 ,
4
5), for all t ∈ R+. Put x, y ∈ X. To

prove (2.14), we have to consider two possible cases as follows:
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Case 1. x ∈ X \
{
1
6

}
. It is clear that∫ d(Tx,Sy)

0
ϕ(t)dt = 0 ≤ α

(
d(x, y)

) ∫ M2(x,y)

0
ϕ(t)dt;

Case 2. x = 1
6 . Obviously

M2(x, y) ≥ d(Ax, Tx) =

∣∣∣∣13 − 1

12

∣∣∣∣ =
1

4

and ∫ d(Tx,Sy)

0
ϕ(t)dt =

∫ 1
12

0
ϕ(t)dt =

1

1728
<

1

5
· 1

64

≤ α
(
d

(
1

6
, y

))∫ 1
4

0
ϕ(t)dt

≤ α
(
d(x, y)

) ∫ M2(x,y)

0
ϕ(t)dt.

It means that (2.14) holds. It follows from Theorem 2.2 that the mappings
A,B, S and T have a unique common fixed point 0 ∈ X. Observe that Theo-
rem 1.3 is a generalization of Theorem 1.1.

Next we assert that Theorem 1.3 is unapplicable in ensuring the existence
of fixed points of T in X Suppose that there exists (ϕ, α) ∈ Φ1 × Φ2 satisfies
the conditions of Theorem 1.3. Using Theorem 1.3, we gain that

0 <

∫ 1
12

0
ϕ(t)dt =

∫ d(T 1
6
,T 1

4
)

0
ϕ(t)dt

≤ α
(
d

(
1

6
,
1

4

))∫ d( 1
6
, 1
4
)

0
ϕ(t)dt <

∫ 1
12

0
ϕ(t)dt,

which is impossible.

Example 3.4. Let X = [0, 1] be endowed with the Euclidean metric d(x, y) =
|x − y| for all x, y ∈ X. Let A,B, S, T : X → X, α : R+ → [0, 1) and
ϕ : R+ → R+ be defined by

Ax = x, Bx = x3, Sx = 1, ∀x ∈ X,

Tx =

{
2
3 , ∀x ∈ [0, 19 ],

1, ∀x ∈ (19 , 1],

α(t) =
2t+1 − 1

2t+2
, ϕ(t) = 729t ln 729, ∀t ∈ R+.

It is easy to verify that (2.1)-(2.3) are valid and α(t) ∈ [14 ,
1
2), for all t ∈ R+.

Put x, y ∈ X. For the sake of verifying (2.15), we consider the following two
possible cases:



408 C. Feng, N. Liu, S. H. Shim and C. Y. Jung

Case 1. x ∈ [0, 19 ]. It is follows that

M3(x, y) ≥ d(Ax, Tx) =

∣∣∣∣x− 2

3

∣∣∣∣ ≥ 5

9

and ∫ d(Tx,Sy)

0
ϕ(t)dt =

∫ 1
3

0
ϕ(t)dt = 9 <

1

4
· 729

5
9

≤ α
(
d(x, y)

) ∫ 5
9

0
ϕ(t)dt

≤ α
(
d(x, y)

) ∫ M3(x,y)

0
ϕ(t)dt;

Case 2. x ∈ (19 , 1]. Evidently∫ d(Tx,Sy)

0
ϕ(t)dt = 0 ≤ α

(
d(x, y)

) ∫ M3(x,y)

0
ϕ(t)dt.

Hence (2.15) holds. It follows from Theorem 2.3 that the mappings A,B, S
and T have a unique common fixed point 1 ∈ X. Notice that Theorem 1.3
generalizes Theorem 1.1. Now we prove that Theorem 1.3 is useless in proving
the existence of fixed points of T in X.

Suppose that there exists (ϕ, α) ∈ Φ1 ×Φ2 satisfies the conditions of Theo-
rem 1.3. According to the Theorem 1.3, we conclude that

0 <

∫ 1
3

0
ϕ(t)dt =

∫ d(T 1
9
,T 4

9
)

0
ϕ(t)dt

≤ α
(
d

(
1

9
,
4

9

))∫ d( 1
9
, 4
9
)

0
ϕ(t)dt <

∫ 1
3

0
ϕ(t)dt,

which is absurd.
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