DOI QR코드

DOI QR Code

Evaluation of the Curvature Reliability of Polymer Flexible Meta Electronic Devices based on Variations of the Electrical Properties

전기적 특성 변화를 통한 고분자 유연메타 전자소자의 곡률 안정성 평가

  • Kwak, Ji-Youn (School of Materials Science and Engineering, University of Ulsan) ;
  • Jeong, Ji-Young (Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM)) ;
  • Ju, Jeong-A (School of Materials Science and Engineering, University of Ulsan) ;
  • Kwon, Ye-Pil (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Si-Hoon (School of Materials Science and Engineering, University of Ulsan) ;
  • Choi, Doo-Sun (Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM)) ;
  • Je, Tae-Jin (Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM)) ;
  • Han, Jun Sae (Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM)) ;
  • Jeon, Eun-chae (School of Materials Science and Engineering, University of Ulsan)
  • 곽지윤 (울산대학교 첨단소재공학부) ;
  • 정지영 (한국기계연구원 나노공정장비연구실) ;
  • 주정아 (울산대학교 첨단소재공학부) ;
  • 권예필 (울산대학교 첨단소재공학부) ;
  • 김시훈 (울산대학교 첨단소재공학부) ;
  • 최두선 (한국기계연구원 나노공정장비연구실) ;
  • 제태진 (한국기계연구원 나노공정장비연구실) ;
  • 한준세 (한국기계연구원 나노공정장비연구실) ;
  • 전은채 (울산대학교 첨단소재공학부)
  • Received : 2021.03.19
  • Accepted : 2021.04.09
  • Published : 2021.06.10

Abstract

As wireless communication devices become more common, interests in how to control the electromagnetic waves generated from the devices are increasing. One of the most commonly used electromagnetic wave control materials is magnetic one, but due to the features that make the product heavy and thick when applied to the product, it is difficult to use them in curved electronic devices. Therefore, a polymer flexible meta electronic device has been presented to sort out the problem, which is thin and can have various curvatures. However, it requires an additional evaluation of curvature reliability. In this study, we developed a method to predict electromagnetic wave control characteristics through the resistance/length of the conductive ink line patterns of polymer flexible meta electronic devices, which is inversely proportional to the electromagnetic wave control characteristics. As the radius of curvature decreased, the resistance/length increased, and there was little variations with the duration times of curvature. We also found that both permanent and recoverable changes along with the removal of curvature were occurred when the curvature was applied, and that the cause of these changes was newly created vertical cracks in the conductive ink line pattern due to the tensile stress applied by applying curvature.

최근 무선통신 기기가 보편화됨에 따라 이로부터 발생하는 전자기파를 제어할 수 있는 방법에 대한 관심이 높아지고 있다. 전자기파 제어 물질로 가장 흔히 사용되는 것은 자성 물질이지만 제품에 적용 시 제품이 무겁고 두꺼워지는 특징 때문에 일반 전자기기에 사용하기에는 문제가 있어 이를 해결하기 위해 가볍고 두께가 얇은 고분자 유연메타 전자소자가 제시되었다. 또한 고분자 유연메타 전자소자는 단일 제품을 다양한 곡률에 적용할 수 있어 곡면 형상이 많은 전자기기에 사용하기에도 적합하다. 그러나 이러한 고분자 유연메타 전자소자를 곡면에 적용하기 위해서는 곡률변화에 따른 전자기파 제어 특성의 안정성 평가가 필수적으로 요구된다. 이에 본 연구에서는 도선 면적이 일정할 때 도선 길이에 따른 저항 변화율이 전자기파 제어 특성과 역의 관계라는 점을 활용하여 고분자 유연메타 전자소자의 전기적 특성 변화를 통해 전자기파 제어 특성을 예측할 수 있는 방법을 개발하였고, 이를 이용하여 고분자 유연메타 전자소자의 곡률 안정성 평가를 수행하였다. 그 결과 곡률 반경이 감소할수록 도선 길이에 따른 저항 변화율이 증가하였고, 곡률 유지 시간에 의한 변화는 없었다. 또한 곡면 적용 시 도선에 영구적인 변화와 곡면 제거 시 회복 가능한 변화가 복합적으로 발생하였고, 이러한 변화의 원인이 곡면 적용 시 가해진 인장응력에 의해 생성된 도선 내 수직방향 크랙이라는 사실도 밝혀냈다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 글로벌프런티어사업 파동에너지극한제어연구단의 지원(No. 2019M3A6B3031046)을 받아 수행되었습니다.

References

  1. D. D. L. Chung, Materials for electromagnetic interference shielding, Mater. Chem. Phys., 255, 123587 (2020). https://doi.org/10.1016/j.matchemphys.2020.123587
  2. M. Verma, A. P. Singh, P. Sambyal, B. P. Singh, S. K. Dhawan, and V. Choudhary, Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding, Phys. Chem. Chem. Phys., 17, 1610-1618 (2015). https://doi.org/10.1039/C4CP04284K
  3. M. M. Ismail, S. N. Rafeeq, J. M. A. Sulaiman, and A. Mandal, Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite, Appl. Phys. A, 124, 380 (2018). https://doi.org/10.1007/s00339-018-1808-x
  4. Z. Guo, S. Park, and H. T. Hahn, Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites, J. Appl. Phys., 101, 09M511 (2007). https://doi.org/10.1063/1.2711074
  5. G. Wang, L. Wang, Y. Gan, and W. Lu, Fabrication and microwave properties of hollow nickel spheres prepared by electroless plating and template corrosion method, Appl. Surf. Sci., 276, 744-749 (2013). https://doi.org/10.1016/j.apsusc.2013.03.162
  6. S. K. Vishwanath, D. Kim, and J. Kim, Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing, Jpn. J. Appl. Phys., 53, 05HB11 (2014). https://doi.org/10.7567/JJAP.53.05HB11
  7. K. Chizari, M. Arjmand, Z. Liu, U. Sundararaj, and D. Therriault, Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications, Mater. Today Commun., 11, 112-118 (2017). https://doi.org/10.1016/j.mtcomm.2017.02.006
  8. S. Merilampi, T. Laine-Ma, and P. Ruuskanen, The characterization of electrically conductive silver ink patterns on flexible substrates, Microelectron. Reliab., 49, 782-790 (2009). https://doi.org/10.1016/j.microrel.2009.04.004
  9. M. Karttunen, P. Ruuskanen, V. Pitkanen, and W. M. Albers, Electrically conductive metal polymer nanocomposites for electronics applications, J. Electron. Mater., 37, 951-954 (2008). https://doi.org/10.1007/s11664-008-0451-2
  10. M. Pudas, N. Halonen, P. Granat, and J. Vahakangas, Gravure printing of conductive particulate polymer inks on flexible substrates, Prog. Org. Coat., 54, 310-316 (2005). https://doi.org/10.1016/j.porgcoat.2005.07.008
  11. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekehamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization, Phys. Rev. B, 78, 241103 (2008). https://doi.org/10.1103/PhysRevB.78.241103
  12. H. G. Ortlek, T. Alpyildiz, and G. Kilic, Determination of electromagnetic shielding performance of hybrid yarn knitted fabrics with anechoic chamber method, Text. Res. J., 83, 90-99 (2013). https://doi.org/10.1177/0040517512456758
  13. Y. Yao, S. Jin, H. Zou, L. Li, X. Ma, G. Lv, F. Gao, X. Lv, and Q. Shu, Polymer-baed lightweight materials for electromagnetic interference shielding: A review, J. Mater. Sci., 56, 6549-6580 (2021). https://doi.org/10.1007/s10853-020-05635-x
  14. T. L. Floyd and D. M. Buchla, Electronic Fundamentals : Circuits, Devices, and Applications, 8th ed., 60-62, Pearson, Boston, USA (2016).
  15. J. Krupka, Contactless methods of conductivity and sheet resistance measurement for semiconductors, conductor and superconductors, Meas. Sci. Technol., 24, 062001 (2013). https://doi.org/10.1088/0957-0233/24/6/062001
  16. K. Maruta, M. Sugawara, Y. Shimada, and M. Ymaguchi, Analysis of optimum sheet resistance for integrated electromagnetic noise suppressors, IEEE Trans. Magn., 42(10), 3377-3379 (2006). https://doi.org/10.1109/TMAG.2006.879443
  17. I. W. Nam, H. K. Lee, and J. H. Jang, Electromagnetic interfernce shielding/absorbing characteristics of CNT-embedded epoxy composites, Compos. Part A Appl. Sci. Manuf., 42, 1110-1118 (2011). https://doi.org/10.1016/j.compositesa.2011.04.016
  18. N. F. Colaneri and L. W. Shacklette, EMI shielding measurements of conductive polymer blends, IEEE Trans. Instrum. Meas., 41, 291-297 (1992). https://doi.org/10.1109/19.137363
  19. T. Je, D. Choi, E. Jeon, E. Park, and H. Choi, Trends of flat mold machining technology with micro pattern, J. Korean Soc. Manuf. Process. Eng., 11, 1-6 (2012).
  20. K. Song, D. Lee, K. Park, S. Lee, H. Kim, and T. Je, Micro pattern machining on larger surface roll molds, J. Korean Soc. Manuf. Process. Eng., 11, 7-12 (2012).
  21. R. C. Stephens, Strength of Materials: Theory and Examples, 7th ed., 3, Elsevier Science, Burlington, USA (2013).
  22. Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. Chua, A mechanical assessment of flexible optoelectronic devices, Thin Solid Films, 394, 201-205 (2001). https://doi.org/10.1016/S0040-6090(01)01138-5
  23. B. Kim, Y. Park, and Y. Joo, Electrical reliability and bending test methodologies of metal electrode on flexible substrate, J. Nanosci. Nanotechnol., 20, 470-477 (2020). https://doi.org/10.1166/jnn.2020.17226
  24. X. F. Zhu, G. P. Zhang, J. Tan, Y. Liu, and S. J. Zhu, Damage behavior of Cu-Ta bilayered films under cyclic loading, J. Mater. Res., 22, 2478-2482 (2007). https://doi.org/10.1557/jmr.2007.0306