Acknowledgement
본 논문은 2019년도 건국대학교 우수연구인력 양성사업과 한국연구재단 지원에 의한 논문임 (No. 2020R1I1A3071646).
References
- Choi H and Park C (2012). Approximate penalization path for smoothly clipped absolute deviation, Journal of Statistical Computation and Simulation, 82, 643-652. https://doi.org/10.1080/00949655.2010.550292
- Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Fan J and Lv J (2011). Nonconcave Penalized Likelihood with NP-Dimensionality, IEEE Transactions on information theory, 57, 5467-5484. https://doi.org/10.1109/TIT.2011.2158486
- Fan J and Peng H (2004). Nonconcave penalized likelihood with a diverging number of parameters, The Annals of Statistics, 32, 928-961. https://doi.org/10.1214/009053604000000256
- Hoerl AE and Kennard RW (1970). Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55-67. https://doi.org/10.1080/00401706.1970.10488634
- Huang J, Breheny P, Lee S, Ma S, and Zhang CH (2016). The mnet method for variable selection, Statistica Sinica, 903-923.
- Huang J, Horowitz JL, and Ma S (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models, The Annals of Statistics, 36, 587-613. https://doi.org/10.1214/009053607000000875
- Kim Y, Choi H, and Oh HS (2008). Smoothly clipped absolute deviation on high dimensions, Journal of the American Statistical Association, 103, 1665-1673. https://doi.org/10.1198/016214508000001066
- Kim Y, Jeon JJ, and Han S (2016). A necessary condition for the strong oracle property, Scandinavian Journal of Statistics, 43, 610-624. https://doi.org/10.1111/sjos.12195
- Kim Y and Kwon S (2012). Global optimality of nonconvex penalized estimators, Biometrika, 99, 315-325. https://doi.org/10.1093/biomet/asr084
- Kwon S, Ahn J, Jang W, Lee S, and Kim Y (2017). A doubly sparse approach for group variable selection, Annals of the Institute of Statistical Mathematics, 69, 997-1025. https://doi.org/10.1007/s10463-016-0571-z
- Kwon S and Kim Y (2012). Large sample properties of the scad-penalized maximum likelihood estimation on high dimensions, Statistica Sinica, 629-653.
- Kwon S, Kim Y, and Choi H (2013). Sparse bridge estimation with a diverging number of parameters, Statistics and Its Interface, 6, 231-242. https://doi.org/10.4310/SII.2013.v6.n2.a7
- Kwon S, Lee S, and Kim Y (2015). Moderately clipped lasso, Computational Statistics & Data Analysis, 92, 53-67. https://doi.org/10.1016/j.csda.2015.07.001
- Kwon S, Oh S, and Lee Y (2016). The use of random-effect models for high-dimensional variable selection problems, Computational Statistics & Data Analysis, 103, 401-412. https://doi.org/10.1016/j.csda.2016.05.016
- Lee S and Kim S (2019). Marginalized lasso in sparse regression, Journal of the Korean Statistical Society, 48, 396-411. https://doi.org/10.1016/j.jkss.2018.12.004
- Lee Y and Oh HS (2014). A new sparse variable selection via random-effect model, Journal of Multivariate Analysis, 125.
- Lv J and Fan Y (2009). A unified approach to model selection and sparse recovery using regularized least squares, The Annals of Statistics, 37, 3498-3528. https://doi.org/10.1214/09-AOS683
- Pan W, Shen X, and Liu B (2013). Cluster analysis: unsupervised learning via supervised learning with a non-convex penalty, The Journal of Machine Learning Research, 14, 1865-1889.
- Shen X and Huang HC (2010). Grouping pursuit through a regularization solution surface, Journal of the American Statistical Association, 105, 727-739. https://doi.org/10.1198/jasa.2010.tm09380
- Shen X, Pan W, and Zhu Y (2012). Likelihood-based selection and sharp parameter estimation, Journal of the American Statistical Association, 107, 223-232. https://doi.org/10.1080/01621459.2011.645783
- Shen X, Pan W, Zhu Y, and Zhou H (2013). On constrained and regularized high-dimensional regression, Annals of the Institute of Statistical Mathematics, 65, 807-832. https://doi.org/10.1007/s10463-012-0396-3
- Tibshirani R (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society : Series B (Methodological), 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Tibshirani RJ and Taylor J (2011). The solution path of the generalized lasso, The Annals of Statistics, 39, 1335-1371. https://doi.org/10.1214/11-AOS878
- Um S, Kim D, Lee S, and Kwon S (2020). On the strong oracle property of concave penalized estimators with infinite penalty derivative at the origin, Journal of the Korean Statistical Society, 49, 439-456. https://doi.org/10.1007/s42952-019-00024-w
- Wang H, Li B, and Leng C (2009). Shrinkage tuning parameter selection with a diverging number of parameters, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71, 671-683. https://doi.org/10.1111/j.1467-9868.2008.00693.x
- Wang H, Li R, and Tsai CL (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method, Biometrika, 94, 553-568. https://doi.org/10.1093/biomet/asm053
- Yuan M and Lin Y (2006). Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
- Yuan M and Lin Y (2007). Model selection and estimation in the gaussian graphical model, Biometrika, 94, 19-35. https://doi.org/10.1093/biomet/asm018
- Zhang CH (2010). Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729
- Zhao P and Yu B (2006). On model selection consistency of lasso, The Journal of Machine Learning Research, 7, 2541-2563.
- Zou H (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735
- Zou H, Hastie T, and Tibshirani R (2006). Sparse principal component analysis, Journal of Computational and Graphical Statistics, 15, 265-286. https://doi.org/10.1198/106186006X113430
- Zou H and Li R (2008). One-step sparse estimates in nonconcave penalized likelihood models, Annals of Statistics, 36, 1509. https://doi.org/10.1214/009053607000000802