Acknowledgement
The research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2019R1F1A1060891).
References
- L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), pp. 359-364. https://doi.org/10.1090/S0002-9947-1938-1501949-6
- K.-T. Kim and H. Lee, Schwarz's lemma from a differential geometric viewpoint, vol. 2 of IISc Lecture Notes Series, IISc Press, Bangalore; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
- V. V. Kisil, Geometry of Mobius transformations, Imperial College Press, London, 2012. Elliptic, parabolic and hyperbolic actions of SL2(R), With 1 DVD-ROM.
- S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, vol. 2 of Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1970.
- S. Kobayashi, Hyperbolic complex spaces, vol. 318 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1998.
- P. Koebe, Uber die Uniformisierung reeller algebraischer Kurven., Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl., 1907 (1907), pp. 177-190.
- S. Lang, SL2(R), Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975.
- K.-H. Lee, On parabolic and hyperbolic automorphisms of the unit disc, Internat. J. Math. Anal., 9 (2015), pp. 1405-1413. https://doi.org/10.12988/ijma.2015.53114
- H. Poincare, Sur l'uniformisation des fonctions analytiques, Acta Math., 31 (1908), pp. 1-63. https://doi.org/10.1007/BF02415442