DOI QR코드

DOI QR Code

빛의 반사 현상에 대한 초등 예비교사의 시각적 모델링 과정

Pre-Service Elementary Teachers' Visual Modeling Process for Reflection of Light

  • 투고 : 2020.12.18
  • 심사 : 2021.02.10
  • 발행 : 2021.02.28

초록

본 연구에서는 빛의 반사 현상에 대한 초등 예비교사의 시각적 모델링 과정을 Halloun (2004)이 제안한 모델링 사고의 세 측면, 정합성(coherence), 대응성(correspondence), 통약성(commensurability)의 관점에서 분석하였다. 초등 예비교사 20명이 참여하였으며 무작위로 2명씩 짝을 이루어 빛의 반사 현상을 관찰하고 이에 대한 시각적 모델을 처음에는 개인적으로 그리고 이후에는 협동적으로 구성하도록 하였다. 개인적 모델과 협동적 모델을 비교한 결과 특별한 교육적 처치가 없었음에도 불구하고 일부 모둠에서 대응성과 통약성 수준이 다소 높아졌다. 또한, 이들의 추론 과정에서 세 가지의 주요한 특징을 발견할 수 있었다. 첫째, 반사의 법칙을 적용하는 통약성 수준은 상황에 따라 유동적으로 계속 변했고 구두 설명과 그림 설명이 일치하지 않는 경우가 많았다. 둘째, 시각적 모델링 과정에서 통약성, 정합성보다 대응성을 우선으로 고려하는 경우가 많았다. 셋째, 대응성과 통약성이 서로 갈등하는 상황에서 참여자들은 보조 가설에 대한 검토 및 수정을 통해 이 갈등을 해결하고 추론을 발전시켜 나갔다. 이러한 연구 결과가 모델링 활동을 효과적으로 지도하는데 주는 몇 가지 시사점을 논의하였다.

This study aims to analyze the visual modeling process of pre-service elementary teachers on the reflection of light. The analytical framework was developed from three aspects; coherence, correspondence, and commensurability of the modeling thinking proposed by Halloun (2004). 20 pre-service elementary teachers participated and were randomly paired to observe the reflection of light. They were asked to construct the visual model individually at first and then collaboratively. Comparing personal and cooperative models, the level of correspondence and commensurability in some groups has increased, despite the lack of special educational treatment. In addition, three main features were found in their reasoning process. First, the level of commensurability to apply the law of reflection continued to change fluidly depending on the circumstances and often the verbal and visual explanations did not match. Second, in the process of visual modeling, correspondence was often given priority over commensurability and coherence. Third, in a situation where correspondence and commensurability are at odds with each other, participants resolved this conflict and developed reasoning through review and revision of the auxiliary hypothesis. Several implications have been discussed for effectively guiding visual modeling activities.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2019R1F1A1040353).

참고문헌

  1. Bendall, S., Goldberg, F., & Galili, I. (1993). Prospective elementary teachers' prior knowledge about light. Journal of Research in Science Teaching, 30(9), 1169-1187. https://doi.org/10.1002/tea.3660300912
  2. Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235-251. https://doi.org/10.1207/s15326985ep2803_4
  3. Clement, J. (1989). Learning via model construction and criticism. Protocol evidence on sources of creativity in science. In G. Glover, R. Ronning, and C. Reynolds (Ed.) Handbook of Creativity: Assessment, Theory and Research (pp. 341-381) New York, NY: Plenum.
  4. Cho, H. S. & Nam, J. (2017). Analysis of trends of model and modeling-related research in science education in Korea. Journal of the Korean Association for Science Education, 37(4), 539-552. https://doi.org/10.14697/jkase.2017.37.4.539
  5. Fetherstonhaugh, T., & Treagust, D. F. (1992). Students' understanding of light and its properties: Teaching to engender conceptual change. Science Education, 76(6), 653-672. https://doi.org/10.1002/sce.3730760606
  6. Giere, R. N. (2005). Understanding scientific reasoning. Boston: Cengage Learning.
  7. Halloun, I. (2004). Modeling theory in science education. Boston: Kluwer Academic Publishers.
  8. Harrison, A. G., & Treagust, David F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884
  9. Heywood, D. S. (2005). Primary trainee teachers' learning and teaching about light: Some pedagogic implications for initial teacher training. International Journal of Science Education, 27(12), 1447-1475. https://doi.org/10.1080/09500690500153741
  10. Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142
  11. Kang N.-H., Choi, W.-H., Lee, J.-K., & Kwak, Y.-S. (2020). Secondary school science education. Seoul: Kyoyookbook Publication Co.
  12. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
  13. Kwon, G. P. (2013). Elementary school teachers' understanding of image. Journal of Korean Elementary Science Education, 32(4), 527-534. https://doi.org/10.15267/keses.2013.32.4.527
  14. Kwon, G. P., Bang, S. Y., Lee, S. M., & Lee, G. H. (2006). Context-dependency of students' conceptions in optics: Focused on vision & mirror image. Journal of the Korean Association for Science Education, 26(3), 406-414.
  15. Langley, D., Ronen, M., & Eylon, B. S. (1997). Light propagation and visual patterns: Preinstruction learners' conceptions. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(4), 399-424. https://doi.org/10.1002/(SICI)1098-2736(199704)34:4<399::AID-TEA8>3.0.CO;2-M
  16. Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: University of Cambridge Press.
  17. Lee, D. (2015). Middle school students' and science teachers' conceptual world and modeling of color perception (Doctoral dissertation). Seoul National University, Seoul.
  18. Lee, J., Kim, D., & Kim, J. (2014). Development and application of peer instruction materials for in-service teachers' training through ray drawing: Focus on refraction of light. Journal of Science Education, 38(1), 182-195. https://doi.org/10.21796/jse.2014.38.1.182
  19. Ministry of Education (2015). Science curriculum. MOE Notification No. 2015-74 [supplement 9].
  20. Mumba, F., Mbewe, S., & Chabalengula, V. M. (2015). Elementary school teachers' familiarity, conceptual knowledge, and interest in light. International Journal of Science Education, 37(2), 185-209. https://doi.org/10.1080/09500693.2014.971906
  21. National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  22. Oh, P. S., & Lee, J. S. (2014). Criteria for evaluating scientific models used by pre-service elementary teachers. Journal of the Korean Association for Science Education, 34(2), 135-146. https://doi.org/10.14697/jkase.2014.34.2.0135
  23. Park, J., Lee, S., Shim, H., Lee, G., & Shin, M. (2018). Analyzing the characteristics of pre-service elementary school teachers' modeling and epistemic criteria with the blackbox simulation program. Journal of the Korean Association for Science Education, 38(3), 305-317. https://doi.org/10.14697/jkase.2018.38.3.305
  24. Park, H., Choi, J., Kim, C., Kim, H. Yoo, J., Jang S., & Choe, S. (2016). The change in modeling ability of science-gifted students through the co-construction of scientific model. Journal of the Korean Association for Science Education, 36(1), 15-28. https://doi.org/10.14697/jkase.2016.36.1.0015
  25. Reiner, M. (1998). Thought experiments and collaborative learning in physics. International Journal of Science Education, 20(9), 1043-1058. https://doi.org/10.1080/0950069980200903
  26. Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205. https://doi.org/10.1207/s1532690xci2302_1
  27. van Zee, E. H., Hammer, D., Bell, M., Roy, P., & Peter, J. (2005). Learning and teaching science as inquiry: A case study of elementary school teachers' investigations of light. Science Education, 89(6), 1007-1042. https://doi.org/10.1002/sce.20084