Acknowledgement
This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the Innovational Food Technology Development Program (#119009-3), funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA).
References
- Shirani K, Hassani FV, Razavi-Azarkhiavi K, Heidari S, Zanjani BR, Karimi G. 2015. Phytotrapy of cyclophosphamide-induced immunosuppression. Environ. Toxicol. Pharmacol. 39: 1262-1275. https://doi.org/10.1016/j.etap.2015.04.012
- Do Youn Jeong, Hee Jong Yang, Su Ji Jeong, Min Guk Kim, Chi Young Yun, Hak Yong Lee, et al. 2019. Immunostimulatory effects of blueberry yeast fermented powder against cyclophosphamide-induced immunosuppressed model. Soc. Pathol. Korean Med. 33: 48-55. https://doi.org/10.15188/kjopp.2019.02.33.1.48
- Lim TG, Jang M, Cho CW, Hong HD, Kim KT, Lee SY, et al. 2016. White ginseng extract induces immunomodulatory effects via the MKK4-JNK pathway. Food Sci. Biotechnol. 25: 1737-1744. https://doi.org/10.1007/s10068-016-0265-6
- Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. 2011. Innate or adaptive immunity? The example of natural killer cells. Science 331: 44-49. https://doi.org/10.1126/science.1198687
- Shen T, Wang G, You L, Zhang L, Ren H, Hu W, et al. 2017. Polysaccharide from wheat bran induces cytokine expression via the toll-like receptor 4-mediated p38 MAPK signaling pathway and prevents cyclophosphamide-induced immunosuppression in mice. Food Nutr. Res. 61: 1344523. https://doi.org/10.1080/16546628.2017.1344523
- Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. 2014. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ. Res. 114: 1640-1660. https://doi.org/10.1161/CIRCRESAHA.114.302761
- Cheng C, Shou Q, Lang J, Jin L, Liu X, Tang D, et al. 2020. Gehua Jiecheng Decoction Inhibits Diethylnitrosamine-Induced Hepatocellular Carcinoma in Mice by Improving Tumor Immunosuppression Microenvironment. Front. Pharmacol. 11: 809. https://doi.org/10.3389/fphar.2020.00809
- Dong N, Li X, Xue C, Zhang L, Wang C, Xu X, et al. 2020. Astragalus polysaccharides alleviates LPS-induced inflammation via the NF-kappaB/MAPK signaling pathway. J. Cell Physiol. 235: 5525-5540. https://doi.org/10.1002/jcp.29452
- Zhang W, Liu HT. 2002. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12: 9-18. https://doi.org/10.1038/sj.cr.7290105
- Liu X, Ye F, Xiong H, Hu D, Limb GA, Xie T, et al. 2014. IL-1beta upregulates IL-8 production in human muller cells through activation of the p38 MAPK and ERK1/2 signaling pathways. Inflammation 37: 1486-1495. https://doi.org/10.1007/s10753-014-9874-5
- Namba S, Nakano R, Kitanaka T, Kitanaka N, Nakayama T, Sugiya H. 2017. ERK2 and JNK1 contribute to TNF-alpha-induced IL-8 expression in synovial fibroblasts. PLoS One 12: e0182923. https://doi.org/10.1371/journal.pone.0182923
- Jung IS, Jeon MG, Oh DS, Jung YJ, Kim HS, Bae D, et al. 2019. Micronized, Heat-treated Lactobacillus plantarum LM1004 alleviates cyclophosphamide-induced immune suppression. J. Med. Food 22: 896-906. https://doi.org/10.1089/jmf.2018.4378
- Xu X, Zhang X. 2015. Effects of cyclophosphamide on immune system and gut microbiota in mice. Microbiol. Res. 171: 97-106. https://doi.org/10.1016/j.micres.2014.11.002
- Qi Q, Dong Z, Sun Y, Li S, Zhao Z. 2018. Protective effect of bergenin against cyclophosphamide-induced immunosuppression by immunomodulatory effect and antioxidation in Balb/c Mice. Molecules 23: 2668. https://doi.org/10.3390/molecules23102668
- Salva S, Marranzino G, Villena J, Aguero G, Alvarez S. 2014. Probiotic Lactobacillus strains protect against myelosuppression and immunosuppression in cyclophosphamide-treated mice. Int. Immunopharmacol. 22: 209-221. https://doi.org/10.1016/j.intimp.2014.06.017
- Jang SE, Joh EH, Lee HY, Ahn YT, Lee JH, Huh CS, et al. 2013. Lactobacillus plantarum HY7712 ameliorates cyclophosphamide-induced immunosuppression in mice. J. Microbiol. Biotechnol. 23: 414-421. https://doi.org/10.4014/jmb.1210.10010
- Hak-Jong Choi, Na-Kyoung Lee, Paik H-D. 2015. Health benefits of lactic acid bacteria isolated from kimchi, with respect to immunomodulatory effects. Food Sci. Biotechnol. 24: 783-789. https://doi.org/10.1007/s10068-015-0102-3
- Ferreira Dos Santos T, Alves Melo T, Almeida ME, Passos Rezende R, Romano CC. 2016. Immunomodulatory effects of Lactobacillus plantarum Lp62 on intestinal epithelial and mononuclear cells. Biomed. Res. Int. 2016: 8404156.
- Hessle C, Hanson LA, Wold AE. 1999. Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production. Clin. Exp. Immunol. 116: 276-282. https://doi.org/10.1046/j.1365-2249.1999.00885.x
- Hoyong Lee, Young-Tae Ahn, Se-Hoon Park, Do-Young Park, Young-Woo Jin, Cha Soon Kim, et al. 2014. Lactobacillus plantarum HY7712 protects against the impairment of NK-cell activity caused by whole-body c-irradiation in mice. J. Microbiol. Biotechnol. 24: 127-131. https://doi.org/10.4014/jmb.1307.07001
- Jorjao AL, de Oliveira FE, Leao MV, Carvalho CA, Jorge AO, de Oliveira LD. 2015. Live and heat-killed Lactobacillus rhamnosus ATCC 7469 may induce modulatory cytokines profiles on macrophages RAW 264.7. Sci.WorldJ. 2015: 716749.
- Stenman LK, Patterson E, Meunier J, Roman FJ, Lehtinen MJ. 2020. Strain specific stress-modulating effects of candidate probiotics: A systematic screening in a mouse model of chronic restraint stress. Behav. Brain Res. 379: 112376. https://doi.org/10.1016/j.bbr.2019.112376
- Yang SJ, Lee JE, Lim SM, Kim YJ, Lee NK, Paik HD. 2019. Antioxidant and immune-enhancing effects of probiotic Lactobacillus plantarum 200655 isolated from kimchi. Food Sci. Biotechnol. 28: 491-499. https://doi.org/10.1007/s10068-018-0473-3
- Liu J, Sun H, Nie C, Ge W, Wang Y, Zhang W. 2018. Oligopeptide derived from solid-state fermented cottonseed meal significantly affect the immunomodulatory in BALB/c mice treated with cyclophosphamide. Food Sci. Biotechnol. 27: 1791-1799. https://doi.org/10.1007/s10068-018-0414-1
- Cheng D, Wan Z, Zhang X, Li J, Li H, Wang C. 2017. Dietary Chlorella vulgaris ameliorates altered immunomodulatory functions in cyclophosphamide-induced immunosuppressive mice. Nutrients 9: 708. https://doi.org/10.3390/nu9070708
- Hyun-Ok Ku, Chang-Hee Kweon, Joon-Hyoung Cho, Sang-Hee Jeong, Shin-Ja Park, Yun-Bae Kim, et al. 1997. Thymocyte apoptosis induced by cyclophosphamide in rats. J. Toxicol. Public Health 13: 39-48.
- Kang KS, Shin S, Lee SI. 2020. N-acetylcysteine modulates cyclophosphamide-induced immunosuppression, liver injury, and oxidative stress in miniature pigs. J. Anim. Sci. Technol. 62: 348-355. https://doi.org/10.5187/jast.2020.62.3.348
- Mansour DF, Saleh DO, Mostafa RE. 2017. Genistein ameliorates cyclophosphamide - induced hepatotoxicity by modulation of oxidative stress and inflammatory mediators. Open Access Maced. J. Med. Sci. 5: 836-843. https://doi.org/10.3889/oamjms.2017.093
- Burrack KS, Hart GT, Hamilton SE. 2019. Contributions of natural killer cells to the immune response against plasmodium. Malar. J. 18: 321. https://doi.org/10.1186/s12936-019-2953-1
- Lemire P, Galbas T, Thibodeau J, Segura M. 2017. Natural killer cell functions during the innate immune response to pathogenic Streptococci. Front. Microbiol. 8: 1196. https://doi.org/10.3389/fmicb.2017.01196
- Wang R, Jaw JJ, Stutzman NC, Zou Z, Sun PD. 2012. Natural killer cell-produced IFN-gamma and TNF-alpha induce target cell cytolysis through up-regulation of ICAM-1. J. Leukoc. Biol. 91: 299-309. https://doi.org/10.1189/jlb.0611308
- Leonard Angka, Andre B Martel, Marisa Kilgour, Ahwon Jeong, Manahil Sadiq, Christiano Tanese de Souza, et al. 2018. Natural killer cell IFNγ secretion is profoundly suppressed following colorectal cancer surgery. Ann. Surg. Oncol. 25: 3747-3754. https://doi.org/10.1245/s10434-018-6691-3
- Lewis SM, Williams A, Eisenbarth SC. 2019. Structure and function of the immune system in the spleen. Sci. Immunol. 4: eaau6085. https://doi.org/10.1126/sciimmunol.aau6085
- Poon MML, Farber DL. 2020. The whole body as the system in systems immunology. iScience 23: 101509. https://doi.org/10.1016/j.isci.2020.101509
- Xu H, Liew LN, Kuo IC, Huang CH, Goh DL, Chua KY. 2008. The modulatory effects of lipopolysaccharide-stimulated B cells on differential T-cell polarization. Immunology 125: 218-228. https://doi.org/10.1111/j.1365-2567.2008.02832.x
- Le DT, Jaffee EM. 2012. Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res. 72: 3439-3444. https://doi.org/10.1158/0008-5472.CAN-11-3912
- Brode S, Cooke A. 2008. Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit. Rev. Immunol. 28: 109-126. https://doi.org/10.1615/CritRevImmunol.v28.i2.20
- Lim HS, Kim YJ, Kim BY, Jeong SJ. 2019. Bakuchiol suppresses inflammatory responses via the downregulation of the p38 MAPK/ERK signaling pathway. Int. J. Mol. Sci. 20: 3574. https://doi.org/10.3390/ijms20143574
- Amer M, Nadeem M, Nazir SUR, Fakhar M, Abid F, Ain QU, et al. 2018. Probiotics and their use in inflammatory bowel disease. Altern. Ther. Health Med. 24: 16-23.
- Ou CC, Lin SL, Tsai JJ, Lin MY. 2011. Heat-killed lactic acid bacteria enhance immunomodulatory potential by skewing the immune response toward Th1 polarization. J. Food Sci. 76: M260-267. https://doi.org/10.1111/j.1750-3841.2011.02161.x