References
- A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, "Searching for MobileNetV3," in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314-1324, 2019.
- K. Clark, M. T. Luong, C. D. Manning, and Q. Le, "SemiSupervised Sequence Modeling with Cross-View Training," in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1914-1925, 2018.
- D. S. Park, W. Chan, Y. Zhang, C. C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le, "SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition," in Proceedings of Interspeech, pp. 2613-2617, 2019.
- T. Bazin and G. Hadjeres, "NONOTO: A Model-agnostic Web Interface for Interactive Music Composition by Inpainting," in Proceedings of the 10th International Conference on Computational Creativity, 2019.
- H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, "The rise of deep learning in drug discovery," Drug Discovery Today, vol. 23, pp. 1241-1250, 2018. https://doi.org/10.1016/j.drudis.2018.01.039
- J. Nocedal and S. J. Wright, Numerical Optimization, second ed., New York, NY, USA, Springer, 2006.
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van houcke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, "TensorFlow: a system for large-scale machine learning," in Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, pp. 265-283, 2016.
- M. Raissi, "Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations," arXiv:1804.07010, 2018.
- F. Black and M. Scholes, "The pricing of options and corporate liabilities," the Journal of Political Economy, vol. 81, pp. 637-654, 1973. https://doi.org/10.1086/260062
- J. Hull, Options, futures, and other derivatives, 10. ed., pearson internat. ed ed., Pearson Prentice Hall, 2018.
- S. E. Shreve, Stochastic calculus for finance 2, Continuous-time models, New York: NY; Heidelberg, Springer, 2004.
- P. Glasserman, Monte Carlo methods in financial engineering, Springer, New York: NY, 2004.
- P. Carr, M. Stanley, and D. Madan, "Option valuation using the fast fourier transform," J. Comput. Finance, vol. 2, pp. 61-73, 1999. https://doi.org/10.21314/JCF.1999.043
- R. Gencay and Min Qi, "Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging," IEEE Transactions on Neural Networks, vol. 12, pp. 726-734, 2001. https://doi.org/10.1109/72.935086
- M. Kohler, A. Krzyzyzak, and N. Todorovic, "Pricing of high-dimensional american options by neural networks," Mathematical Finance, vol. 20, pp. 384-410, 2010.
- J. Sirignano and K. Spiliopoulos, "Dgm: A deep learning algorithm for solving partial differential equations," Journal of Computational Physics, vol. 375, pp. 1339-1364, 2018. https://doi.org/10.1016/j.jcp.2018.08.029
- W. E, J. Han, and A. Jentzen, "Deep learning-based numerical methods for high dimensional parabolic partial differential equations and backward stochastic differential equations," Communications in Mathematics and Statistics, vol. 5, pp. 349-380, 2017. https://doi.org/10.1007/s40304-017-0117-6
- S. Becker, P. Cheridito, A. Jentzen, and T. Welti, "Solving high-dimensional optimal stopping problems using deep learning," CoRR abs/1908.01602, 2019.
- W. Margrabe, "The value of an option to exchange one asset for another," Journal of Finance, vol. 33, pp. 177-186, 1978. https://doi.org/10.1111/j.1540-6261.1978.tb03397.x
- X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural networks," in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, pp. 315-323, 2011.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," the 3rd International Conference for Learning Representations, San Diego, 2015.