Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1F1A1060789).
References
- Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
- Yun EJ, Yu S, Kim KH. 2017. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Appl. Microbiol. Biotechnol. 101: 5581-5589. https://doi.org/10.1007/s00253-017-8383-5
- Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464: 908-912. https://doi.org/10.1038/nature08937
- Park SH, Lee CR, Hong SK. 2020. Implications of agar and agarase in industrial applications of sustainable marine biomass. Appl. Microbiol. Biotechnol. 104: 2815-2832. https://doi.org/10.1007/s00253-020-10412-6
- Seo JW, Tsevelkhorloo M, Lee CR, Kim SH, Kang DK, Asghar S, et al. 2020. Molecular characterization of a novel 1,3-α-3,6-anhydro-l-galactosidase, ahg943, with cold- and high-salt-tolerance from Gayadomonas joobiniege G7. J. Microbiol. Biotechnol. 30: 1659-1669. https://doi.org/10.4014/jmb.2008.08017
- Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, et al. 2013. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol. 97: 2961-2970. https://doi.org/10.1007/s00253-012-4184-z
- Yun EJ, Lee AR, Kim JH, Cho KM, Kim KH. 2017. 3,6-Anhydro-L-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol. Food Chem. 221: 976-983. https://doi.org/10.1016/j.foodchem.2016.11.066
- Kim NJ, Li H, Jung K, Chang HN, Lee PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol. 107: 7466-7469.
- Yun EY, Lee HT, Kim KH. 2015. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ. Microbiol. 17: 1677-1688. https://doi.org/10.1111/1462-2920.12607
- Lee S, Yun EJ, Kim KH, Kim HY, Choi IG. 2017. 3,6-Anhydro-L-galactonate cycloisomerase from Vibrio sp. strain EJY3: crystallization and X-ray crystallographic analysis. Acta Crystallogr. F Struct. Biol. Commun. 73: 511-514. https://doi.org/10.1107/S2053230X17011797
- Stanier RY. 1942. Agar decomposing strains of the Actinomyces coelicolor species group. J. Bacteriol. 44: 555-570. https://doi.org/10.1128/jb.44.5.555-570.1942
- Temuujin U, Chi WJ, Lee SY, Chang YK, Hong SK. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749-759. https://doi.org/10.1007/s00253-011-3347-7
- Temuujin U, Chi WJ, Chang YK, Hong SK. 2012. Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo- and endo-type β-agarase-producing neoagarobiose. J. Bacteriol. 194: 142-149. https://doi.org/10.1128/JB.05978-11
- Green MR, Sambrook J. 2012. Molecular Cloning. A Laboratory Manual, 4th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
- Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics, John Innes Foundation, Norwich Research Park, Colney, Norwich NR4 7UH, England.
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Bradford MM.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Asghar S, Lee CR, Chi WJ, Kang DK, Hong SK. 2019. Molecular cloning and characterization of a novel cold-adapted alkaline 1,3-α-3,6-anhydro-l-galactosidase, Ahg558, from Gayadomonas joobiniege G7. Appl. Biochem. Biotechnol. 188: 1077-1095. https://doi.org/10.1007/s12010-019-02963-w
- Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
- Chen Y, Mehta G, Vasiliou V. 2009. Antioxidant defenses in the ocular surface. Ocul. Surf. 7: 176-185. https://doi.org/10.1016/S1542-0124(12)70185-4
- Vasiliou V, Pappa A, Estay T. 2004. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab. Rev. 36: 279-299. https://doi.org/10.1081/DMR-120034001
- Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786. https://doi.org/10.1038/nmeth.1701
- Szumilo T. 1981. Pathway for D-galactonate catabolism in non-pathogenic mycobacteria. J. Bacteriol. 148: 368-370. https://doi.org/10.1128/jb.148.1.368-370.1981
- Wong TY, Yao XT. 1994. The DeLey-Doudoroff pathway of galactose metabolism in Azotobacter vinelandii. Appl. Environ. Microbiol. 60: 2065-2068. https://doi.org/10.1128/aem.60.6.2065-2068.1994
- Lee SB, Cho SJ, Kim JA, Lee SY, Kim SM, Lim HS. 2014. Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioproc. E. 19: 866-878. https://doi.org/10.1007/s12257-014-0622-3
- Singh S, Brocker C, Jackson B, Matsumoto A, Thompson D. 2013. Aldehyde dehydrogenases in cellular response to oxidative/electrophilic stress. Free Radic. Biol. Med. 56: 89-101. https://doi.org/10.1016/j.freeradbiomed.2012.11.010
- Yu S, Choi I-G, Yun EJ, Kim KH. 2018. High substrate specificity of 3,6-anhydro-l-galactose dehydrogenase indicates its essentiality in the agar catabolism of a marine bacterium, Process Biochem. 64: 130-135. https://doi.org/10.1016/j.procbio.2017.09.016
- Wang Y, Li PY, Zhang Y, Cao HY, Wang YJ, Li CY, et al. 2020. 3,6-Anhydro-L-galactose dehydrogenase VvAHGD is a member of a new aldehyde dehydrogenase family and catalyzes by a novel mechanism with conformational switch of two catalytic residues Cysteine 282 and Glutamate 248. J. Mol. Biol. 432: 2186-2203. https://doi.org/10.1016/j.jmb.2020.02.008
- Gerlt JA, Babbit, PC, Jacobson MP, Almo SC. 2012. Divergent evolution in the enolase superfamily: strategies for assigning functions. J. Biol. Chem. 287: 29-34. https://doi.org/10.1074/jbc.R111.240945
- Andberg M, Maaheimo H, Boer H, Penttila M, Koivula A, Richard P. 2012. Characterization of a novel Agrobacterium tumefaciens galactarolactone cycloisomerase enzyme for direct conversion of D-galactarolactone to 3-deoxy-2-keto-L-threo-hexarate. J. Biol. Chem. 287: 17662-17671. https://doi.org/10.1074/jbc.M111.335240
Cited by
- SCO6992, a Protein with β-Glucuronidase Activity, Complements a Mutation at the absR Locus and Promotes Antibiotic Biosynthesis in Streptomyces coelicolor vol.31, pp.11, 2021, https://doi.org/10.4014/jmb.2108.08001