Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (Grant No.2016R1D1A1B01007074).
References
- E. Lee, J. Park, M. Yim, S. Jeong, and G. Yoon, "High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films," Applied Physics Letters, vol. 104, no. 21, pp. 213908, 2014. https://doi.org/10.1063/1.4880935
- Y. Chang, B. Yin, Y. Qiu, H. Zhang, J. Lei, Y. Zhao, Y. Luo, and L. Hu, "ZnO nanorods array/BaTiO3 coating layer composite structure nanogenerator," Journal of Materials Science: Materials in Electronics, vol. 27, pp. 3773-3777, 2015. https://doi.org/10.1007/s10854-015-4221-7
- B. Yin, Y. Qiu, H. Zhang, J. Ji, and L. Hu, "Low-frequency flexible piezoelectric nanogenerators based on ZnO nanorods grown on Cu wires," CrystEngComm, vol. 16, pp. 6831, 2014. https://doi.org/10.1039/C4CE00954A
- J. Lei, B. Yin, Y. Qiu, H. Zhang, Y. Chang, Y. Luo, Y. Zhao, J. Ji, and L. Hu, "Fabrication of flexible nanogenerator with enhanced performance based on p-CuO/n-ZnO heterostructure," Journal of Materials Science: Materials in Electronics, vol. 27, pp. 1983-1987, 2015.
- Y. Qiu, J. Lei, D. Yang, B. Yin, H. Zhang, J. Bian, J. Ji, Y. Liu, Y. Zhao, Y. Luo, and L. Hu, "Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process," Applied Physics Letters, vol. 104, pp. 113903, 2014. https://doi.org/10.1063/1.4869118
- Y. H. Ko, S. H. Lee, and J. S. Yu, "Performance enhanced piezoelectric ZnO nanogenerators with highly rough Au electrode surfaces on ZnO submicrorod arrays," Applied Physics Letters, vol. 103, pp. 022911, 2013. https://doi.org/10.1063/1.4813543
- Y. Zhang, C. Liu, J. Liu, J. Xiong, J. Liu, K. Zhang, Y. Liu, M. Peng, A. Yu, A. Zhang, Y. Zhang, Z. Wang, J. Zhai, and Z. Wang, "Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators," ACS Applied Materials & Interfaces, vol. 8, pp. 1381-1387, 2016. https://doi.org/10.1021/acsami.5b10345
- G. Zhu, R. Yang, S. Wang, and Z. L. Wang, "Flexible high-output nanogenerator based on lateral ZnO nanowire array," Nano Letters, vol. 10, pp. 3151-3155, 2010. https://doi.org/10.1021/nl101973h
- S. H. Shin, Y. H. Kim, M. H. Lee, J. Y. Jung, J. H. Seol, and J. Nah, "Lithium-doped zinc oxide nanowires-polymer composite for high performance flexible piezoelectric nanogenerator," ACS Nano, vol. 8, pp. 10844-10850, 2014. https://doi.org/10.1021/nn5046568
- Q. Wang, D. Yang, Y. Qiu, X. Zhang, W. Song, and L. Hu, "Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices," Applied Physics Letters, vol. 112, pp. 063906, 2018. https://doi.org/10.1063/1.5012950
- B. Jeon, J. Ha, C. Yoon, and G. Yoon, "Effect of a-Si thin film on the performance of a-Si/ZnO-stacked piezoelectric energy harvesters," Applied Physics Letters, vol. 113, pp. 243902, 2018. https://doi.org/10.1063/1.5060638
- E. Lee, J. Park, M. Yim, Y. Kim, and G. Yoon, "Flexible piezoelectric ZnO nanogenerator with silver-based electrode," IEEE 9th NMDC, Italy, 2014.
- S. K. Baek, S. S. Kwak, J. S. Kim, S. W. Kim, and H. K. Cho, "Binary oxide p-n heterojunction piezoelectric nanogenerators with an electrochemically deposited high p-type Cu2O layer," ACS Applied Materials & Interfaces, vol. 8, pp. 22135-22141, 2016. https://doi.org/10.1021/acsami.6b03649
- C. Yoon, B. Jeon, and G. Yoon, "Formation and characterization of various ZnO/SiO2-stacked layers for flexible micro-energy harvesting devices," Applied Sciences, vol. 8, pp. 1127, 2018. https://doi.org/10.3390/app8071127
- C. Yoon, B. Jeon, and G. Yoon, "A feasibility study of fabrication of piezoelectric energy harvesters on commercially available aluminum foil," Energies, vol. 12, no. 14, pp. 2797, 2019. https://doi.org/10.3390/en12142797
- C. Yoon, B. Jeon, and G. Yoon, "Development of Al foil-based sandwich-type ZnO piezoelectric nanogenerators," AIP Advances, vol. 10, pp. 045018, 2020. https://doi.org/10.1063/1.5145037
- T. Baranwal, Nitika, and P. K. Pateriya, "Development of IoT based smart security and monitoring devices for agriculture," IEEE 6th International Conference - Cloud System and Big Data Engineering, India, pp. 597-602, 2016.
- Y. Kim, G. Yoon, and S. Park, "Direct Contact Resistance Evaluation of Thermoelectric Legs," Experimental Mechanics, vol. 56, pp. 861-869, 2016. https://doi.org/10.1007/s11340-016-0131-8
- V. Tran, S. V. N. Pammi, V. Dao, H. Choi, and S. Yoon, "Chemical vapor deposition in fabrication of robust and highly efficient perovskite solar cells based on single-walled carbon nanotubes counter electrodes," Journal of Alloys and Compounds, vol. 747, pp. 703-711, 2018. https://doi.org/10.1016/j.jallcom.2018.02.006
- C. L. Zhang, Z. H. Lai, M. Q. Li, and D. Yurchenko, "Wind energy harvesting from a conventional turbine structure with an embedded vibro-impact dielectric elastomer generator," Journal of Sound and Vibration, vol. 487, pp. 115616, 2020. https://doi.org/10.1016/j.jsv.2020.115616
- D. K. Sah and T Amgoth, "Renewable energy harvesting schemes in wireless sensor networks: A Survey," Information Fusion, vol. 63, pp. 223-247, 2020. https://doi.org/10.1016/j.inffus.2020.07.005
- S. Ferdoush and X. Li, "Wireless Sensor Network System Design Using Raspberry Pi and Arduino for Environmental Monitoring Applications," Procedia Computer Science, vol. 34, pp. 103-110, 2014. https://doi.org/10.1016/j.procs.2014.07.059
- C. Vargas-Hernandez, F. N. Jimenez-Garcia, J. F. Jurado, and V. H. Granada, "XRD, μ-Raman and optical absorption investigations of ZnO deposited by SILAR method," Microelectronics Journal, vol. 39, no. 11, pp. 1347-1348, 2008. https://doi.org/10.1016/j.mejo.2008.01.057
- N. R. Alluri, A. Chandrasekhar, and S. J. Kim, "Exalted electric output via piezoelectric-triboelectric coupling/sustainable butterfly wing structure type multiunit hybrid nanogenerator," ACS Sustainable Chemistry & Engineering, vol. 6, pp. 1919-1933, 2018. https://doi.org/10.1021/acssuschemeng.7b03337
- B. U. Ye, B. J. Kim, J. Ryu, J. Y. Lee, J. M. Biak, and K. Hong, "Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power," Nanoscale, vol. 7, no. 39, pp. 16189-16194, 2015. https://doi.org/10.1039/c5nr02602d
- H. Li, X. Zhang, Y. Zhu, R. Li, H. Chen, P. Gao, Y. Zhang, T. Li, Y. Liu, and Q. Li, "Hydrothermal deposition of a zinc oxide nanorod array on a carbon nanotube film as a piezoelectric generator," RSC Advances, vol. 4, pp. 43772-43777, 2014. https://doi.org/10.1039/C4RA09014D
- R. Yang, Y. Qin, C. Li, L. Dai, and Z. L. Wang, "Characteristics of output voltage and current of integrated nanogenerators," Applied Physics Letters, vol. 94, no. 2, pp. 022905, 2009. https://doi.org/10.1063/1.3072362
- W. S. Jung, M. Lee, S. H. Baek, I. K. Jung, S. J. Yoon, and C. Y. Kang, "Structural approaches for enhancing output power of piezoelectric polyvinylidene fluoride generator," Nano Energy, vol. 22, pp. 514-523, 2016. https://doi.org/10.1016/j.nanoen.2016.02.043