DOI QR코드

DOI QR Code

Nanostructured energy harvesting devices and their applications for IoT sensor networks

나노구조체 에너지 하베스팅 소자와 IoT 센서 네트워크의 융합 연구

  • Yoon, Chongsei (School of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jeon, Buil (School of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yoon, Giwan (School of Electrical Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2021.02.08
  • Accepted : 2021.04.20
  • Published : 2021.05.31

Abstract

We have demonstrated a sandwich-type ZnO-based piezoelectric energy harvesting nanogenerator, namely ZCZ-NG device, composed of symmetrically stacked layers of ZnO/carbon tape/ZnO structure. Especially, we have adopted a conductive double-sided adhesive carbon tape in an effort to fabricate a high-quality ZCZ-NG device, leading to its superior output performance in terms of the peak-to-peak output voltage. Effects of the device size, ZnO layer thickness, and bending strain rate on the device performance have been investigated by measuring the output voltage. Moreover, to evaluate the effectiveness of the fabricated ZCZ-NG devices, we have experimentally implemented a sensor network testbed which can utilize the output voltages of ZCZ-NG devices. This sensor network testbed consists of several components such as Arduino-based transmitter and receiver nodes, wirelessly transmitting the sensed information of each node. We hope that this research combining the ZnO-based energy harvesting devices and IoT sensor networks will contribute to the development of more advanced energy harvester-driven IoT sensor networks in the future.

본 논문에서는 산화아연/탄소 테이프/산화아연의 대칭 구조를 갖는 ZCZ-NG라는 샌드위치형 산화아연(ZnO) 압전 에너지 하베스팅 소자를 제시한다. 고품질의 ZCZ-NG 소자를 제작하기 위해 전도성 양면 접착 탄소 테이프를 활용하였으며, 이는 매우 높은 피크 투 피크 전압(Vpp)을 발생시키는 ZCZ-NG 소자의 개발로 이어졌다. ZCZ-NG 소자의 크기, 산화아연 층의 두께 그리고 벤딩 변형률 변화에 따른 ZCZ-NG 소자의 출력 성능 변화를 측정, 분석하였다. 또한 제작된 ZCZ-NG 소자의 실효성 및 응용 가능성을 검증하기 위한 실험적인 센서 네트워크 테스트베드를 구축하였다. 상용 아두이노를 기반으로 한 송신, 수신 노드들로 이루어진 테스트베드에서 노드들은 각 노드에서 감지한 정보들을 무선으로 송수신한다. 본 연구에서 사용된 대칭 구조의 샌드위치형 ZCZ-NG 소자 제작 기술과 센서 네트워크와의 융합 연구가 앞으로 더 발전되어 사물인터넷 구현을 위한 자가발전 센서 네트워크 연구에 도움이 되길 바란다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (Grant No.2016R1D1A1B01007074).

References

  1. E. Lee, J. Park, M. Yim, S. Jeong, and G. Yoon, "High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films," Applied Physics Letters, vol. 104, no. 21, pp. 213908, 2014. https://doi.org/10.1063/1.4880935
  2. Y. Chang, B. Yin, Y. Qiu, H. Zhang, J. Lei, Y. Zhao, Y. Luo, and L. Hu, "ZnO nanorods array/BaTiO3 coating layer composite structure nanogenerator," Journal of Materials Science: Materials in Electronics, vol. 27, pp. 3773-3777, 2015. https://doi.org/10.1007/s10854-015-4221-7
  3. B. Yin, Y. Qiu, H. Zhang, J. Ji, and L. Hu, "Low-frequency flexible piezoelectric nanogenerators based on ZnO nanorods grown on Cu wires," CrystEngComm, vol. 16, pp. 6831, 2014. https://doi.org/10.1039/C4CE00954A
  4. J. Lei, B. Yin, Y. Qiu, H. Zhang, Y. Chang, Y. Luo, Y. Zhao, J. Ji, and L. Hu, "Fabrication of flexible nanogenerator with enhanced performance based on p-CuO/n-ZnO heterostructure," Journal of Materials Science: Materials in Electronics, vol. 27, pp. 1983-1987, 2015.
  5. Y. Qiu, J. Lei, D. Yang, B. Yin, H. Zhang, J. Bian, J. Ji, Y. Liu, Y. Zhao, Y. Luo, and L. Hu, "Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process," Applied Physics Letters, vol. 104, pp. 113903, 2014. https://doi.org/10.1063/1.4869118
  6. Y. H. Ko, S. H. Lee, and J. S. Yu, "Performance enhanced piezoelectric ZnO nanogenerators with highly rough Au electrode surfaces on ZnO submicrorod arrays," Applied Physics Letters, vol. 103, pp. 022911, 2013. https://doi.org/10.1063/1.4813543
  7. Y. Zhang, C. Liu, J. Liu, J. Xiong, J. Liu, K. Zhang, Y. Liu, M. Peng, A. Yu, A. Zhang, Y. Zhang, Z. Wang, J. Zhai, and Z. Wang, "Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators," ACS Applied Materials & Interfaces, vol. 8, pp. 1381-1387, 2016. https://doi.org/10.1021/acsami.5b10345
  8. G. Zhu, R. Yang, S. Wang, and Z. L. Wang, "Flexible high-output nanogenerator based on lateral ZnO nanowire array," Nano Letters, vol. 10, pp. 3151-3155, 2010. https://doi.org/10.1021/nl101973h
  9. S. H. Shin, Y. H. Kim, M. H. Lee, J. Y. Jung, J. H. Seol, and J. Nah, "Lithium-doped zinc oxide nanowires-polymer composite for high performance flexible piezoelectric nanogenerator," ACS Nano, vol. 8, pp. 10844-10850, 2014. https://doi.org/10.1021/nn5046568
  10. Q. Wang, D. Yang, Y. Qiu, X. Zhang, W. Song, and L. Hu, "Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices," Applied Physics Letters, vol. 112, pp. 063906, 2018. https://doi.org/10.1063/1.5012950
  11. B. Jeon, J. Ha, C. Yoon, and G. Yoon, "Effect of a-Si thin film on the performance of a-Si/ZnO-stacked piezoelectric energy harvesters," Applied Physics Letters, vol. 113, pp. 243902, 2018. https://doi.org/10.1063/1.5060638
  12. E. Lee, J. Park, M. Yim, Y. Kim, and G. Yoon, "Flexible piezoelectric ZnO nanogenerator with silver-based electrode," IEEE 9th NMDC, Italy, 2014.
  13. S. K. Baek, S. S. Kwak, J. S. Kim, S. W. Kim, and H. K. Cho, "Binary oxide p-n heterojunction piezoelectric nanogenerators with an electrochemically deposited high p-type Cu2O layer," ACS Applied Materials & Interfaces, vol. 8, pp. 22135-22141, 2016. https://doi.org/10.1021/acsami.6b03649
  14. C. Yoon, B. Jeon, and G. Yoon, "Formation and characterization of various ZnO/SiO2-stacked layers for flexible micro-energy harvesting devices," Applied Sciences, vol. 8, pp. 1127, 2018. https://doi.org/10.3390/app8071127
  15. C. Yoon, B. Jeon, and G. Yoon, "A feasibility study of fabrication of piezoelectric energy harvesters on commercially available aluminum foil," Energies, vol. 12, no. 14, pp. 2797, 2019. https://doi.org/10.3390/en12142797
  16. C. Yoon, B. Jeon, and G. Yoon, "Development of Al foil-based sandwich-type ZnO piezoelectric nanogenerators," AIP Advances, vol. 10, pp. 045018, 2020. https://doi.org/10.1063/1.5145037
  17. T. Baranwal, Nitika, and P. K. Pateriya, "Development of IoT based smart security and monitoring devices for agriculture," IEEE 6th International Conference - Cloud System and Big Data Engineering, India, pp. 597-602, 2016.
  18. Y. Kim, G. Yoon, and S. Park, "Direct Contact Resistance Evaluation of Thermoelectric Legs," Experimental Mechanics, vol. 56, pp. 861-869, 2016. https://doi.org/10.1007/s11340-016-0131-8
  19. V. Tran, S. V. N. Pammi, V. Dao, H. Choi, and S. Yoon, "Chemical vapor deposition in fabrication of robust and highly efficient perovskite solar cells based on single-walled carbon nanotubes counter electrodes," Journal of Alloys and Compounds, vol. 747, pp. 703-711, 2018. https://doi.org/10.1016/j.jallcom.2018.02.006
  20. C. L. Zhang, Z. H. Lai, M. Q. Li, and D. Yurchenko, "Wind energy harvesting from a conventional turbine structure with an embedded vibro-impact dielectric elastomer generator," Journal of Sound and Vibration, vol. 487, pp. 115616, 2020. https://doi.org/10.1016/j.jsv.2020.115616
  21. D. K. Sah and T Amgoth, "Renewable energy harvesting schemes in wireless sensor networks: A Survey," Information Fusion, vol. 63, pp. 223-247, 2020. https://doi.org/10.1016/j.inffus.2020.07.005
  22. S. Ferdoush and X. Li, "Wireless Sensor Network System Design Using Raspberry Pi and Arduino for Environmental Monitoring Applications," Procedia Computer Science, vol. 34, pp. 103-110, 2014. https://doi.org/10.1016/j.procs.2014.07.059
  23. C. Vargas-Hernandez, F. N. Jimenez-Garcia, J. F. Jurado, and V. H. Granada, "XRD, μ-Raman and optical absorption investigations of ZnO deposited by SILAR method," Microelectronics Journal, vol. 39, no. 11, pp. 1347-1348, 2008. https://doi.org/10.1016/j.mejo.2008.01.057
  24. N. R. Alluri, A. Chandrasekhar, and S. J. Kim, "Exalted electric output via piezoelectric-triboelectric coupling/sustainable butterfly wing structure type multiunit hybrid nanogenerator," ACS Sustainable Chemistry & Engineering, vol. 6, pp. 1919-1933, 2018. https://doi.org/10.1021/acssuschemeng.7b03337
  25. B. U. Ye, B. J. Kim, J. Ryu, J. Y. Lee, J. M. Biak, and K. Hong, "Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power," Nanoscale, vol. 7, no. 39, pp. 16189-16194, 2015. https://doi.org/10.1039/c5nr02602d
  26. H. Li, X. Zhang, Y. Zhu, R. Li, H. Chen, P. Gao, Y. Zhang, T. Li, Y. Liu, and Q. Li, "Hydrothermal deposition of a zinc oxide nanorod array on a carbon nanotube film as a piezoelectric generator," RSC Advances, vol. 4, pp. 43772-43777, 2014. https://doi.org/10.1039/C4RA09014D
  27. R. Yang, Y. Qin, C. Li, L. Dai, and Z. L. Wang, "Characteristics of output voltage and current of integrated nanogenerators," Applied Physics Letters, vol. 94, no. 2, pp. 022905, 2009. https://doi.org/10.1063/1.3072362
  28. W. S. Jung, M. Lee, S. H. Baek, I. K. Jung, S. J. Yoon, and C. Y. Kang, "Structural approaches for enhancing output power of piezoelectric polyvinylidene fluoride generator," Nano Energy, vol. 22, pp. 514-523, 2016. https://doi.org/10.1016/j.nanoen.2016.02.043