DOI QR코드

DOI QR Code

Analysis of Groundwater Level Prediction Performance with Influencing Factors by Artificial Neural Network

지하수위 영향인자에 따른 인공신경망 기반의 지하수위 예측 성능 분석

  • Kim, Incheol (Dept. Civil and Environmental Engrg., Univ. of Nebraska-Lincoln) ;
  • Lee, Jaehwan (Dept. Urban Infrastructure Research, Seoul Institute of Technology) ;
  • Kim, Junghwan (Dept. Smart City Research, Seoul Institute of Technology) ;
  • Lee, Hyoungkyu (Dept. Civil Engrg., Seoil Univ.) ;
  • Lee, Junhwan (Dept. Civil and Environmental Engrg., Yonsei Univ.)
  • Received : 2020.12.01
  • Accepted : 2021.04.08
  • Published : 2021.05.31

Abstract

Groundwater level (GWL) causes the stress state within soil and affects the bearing capacity and the settlement of foundation. In this study, the analyses of influencing factors on GWL fluctuation were performed. From the results, river stage and moving average of precipitation were main influence components for urban near large river and rural areas, respectively. In addition, the prediction performance of GWL using artificial neural network (ANN) was conducted with respect to the influence components. As a result, the effect of main component was significant on the prediction performance of GWL.

지하수위 변동은 지반의 응력 상태에 변화를 일으켜 기초구조물의 지지력 및 침하에 직·간접적인 영향을 미칠 수 있다. 본 연구에서는 연구 대상지역을 선정하여 지하수위 영향인자 분석을 수행하였다. 그 결과 대상지역에 따라 지하수위에 미치는 영향인자들이 각각 달랐으며, 규모가 큰 하천변에 위치한 도심지역의 경우 하천수위가 지하수위 변동에 영향을 미치는 주요 인자였으며, 지표면 포장율이 낮은 도외지역의 경우는 선행강우를 고려하기 위해 도입된 강우이동평균이 주요 인자였다. 또한, 여러 입력 인자 조합을 고려하여 인공신경망을 통한 지하수위를 예측을 수행하였다. 분석결과 주요 지하수위 영향인자가 지하수위 예측 성능에 미치는 영향이 큰 것으로 나타났다. 결과적으로, 인공신경망을 이용하여 지하수위를 예측할때, 적절한 지하수위 영향인자 평가가 수행되어야 하며 이를 예측에 적용할 필요가 있는 것을 나타낸다.

Keywords

Acknowledgement

본 연구는 2019년 연세대학교대학원 연구장학금 및, 한국에너지기술평가원, 한국연구재단, 국토교통과학기술진흥원의 지원(Nos. 20194030202460, 2020R1A2C2011966, 20SMIP-A158708-01)으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Ausilio, E. and Conte, E. (2005), "Influence of Groundwater on the Bearing Capacity of Shallow Foundations", Canadian Geotechnical Journal, Vol.42, pp.663-672. https://doi.org/10.1139/t04-084
  2. Batelaan, O., De Smedt, F., and Triest, L. (2003), "Regional Groundwater Discharge: Phreatophyte Mapping, Groundwater Modeling and Impact Analysis of Land-use Change", Journal of Hydrology, Vol.275, pp.86-108. https://doi.org/10.1016/S0022-1694(03)00018-0
  3. Coppola, E. A., Rana, A. J., Poulton, M. M., Szidarovszky, F., and Uhl, V. W. (2005), "A Neural Network Model for Predicting Aquifer Water Level Elevations", Groundwater, Vol.43, No.2, pp. 231-241. https://doi.org/10.1111/j.1745-6584.2005.0003.x
  4. Daliakopoulos, I. N., Coulibaly, P., and Tsanis, I. K. (2005), "Groundwater Level Forecasting Using Artificial Neural Networks", Journal of Hydrology, Vol.309, pp.229-240. https://doi.org/10.1016/j.jhydrol.2004.12.001
  5. Dawson, C. W. and Wilhy, R. L. (2001), "Hydrological Modelling Using Artificial Neural Networks", Progress in Physical Geography, Vol.25, No.1, pp.80-108. https://doi.org/10.1177/030913330102500104
  6. Gerken, W. C., Purvis, L. K., and Butera, R. J. (2006), "Genetic Algorithm for Optimization and Specification of a Neuron Model", Neuroconputing, Vol.69, pp.1039-1042. https://doi.org/10.1016/j.neucom.2005.12.041
  7. Guttman, N. B. (1999), "Accepting the Standardized Precipitation Index: A Calculation Algorithm", Journal of the American Water Resources Association, Vol.35, No.2, pp.311-322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
  8. Hoque, M., Hoque, M., and Ahmed, K. (2007), "Declining Groundwater Level and Aquifer Dewatering in Dhaka Metropolitan Area, Bangladesh: Causes and Quantification", Hydrogeology Journal, Vol.15, pp.1523-1534. https://doi.org/10.1007/s10040-007-0226-5
  9. Kim, I., Park, D., Kyung, D., Kim, G., Kim, S., and Lee, J. (2016), "Comparative Influences of Precipitation and River Stage on Groundwater Levels in Near-river Areas", Sustainability, Vol.8, No.1, pp.1-16. https://doi.org/10.3390/su8010001
  10. Kim, I. and Lee, J. (2018a), "Prediction Model for Spatial and Temporal Variation of Groundwater Level based on River Stage", Journal of Hydrologic Engineering, Vol.23, No.67, DOI: 10.1061/(ASCE)HE.1943-5584.0001658, 1-8.
  11. Kim, I. and Lee, J. (2018b), "The Effect of Seasonal Input on Predicting Groundwater Level Using Artificial Neural Network", Ecology and Resilient Infrastructure, Vol.5, No.3, pp.125-133. https://doi.org/10.17820/eri.2018.5.3.125
  12. Kim, I. and Lee, J. (2018c), "Influencing Factor Analysis on Groundwater Level Fluctuation Near River", Ecology and Resilient Infrastructure, Vol.5, No.2, pp.72-81. https://doi.org/10.17820/ERI.2018.5.2.072
  13. Kim, I. and Lee, J. (2019), "Proposed Correlation Model for Groundwater Level Prediction based on River Stage Considering Changes in Hydrological and Geological Conditions", Journal of Hydrologic Engineering, Vol.24, No.10, DOI: 10.1061/(ASCE)HE.1943-5584.0001849, 1-14.
  14. Nourani, V. and Mousavi, S. (2016), "Spatiotemporal Groundwater Level Modeling Using Hybrid Artificial Intelligence-meshless Method", Journal of Hydrology, Vol.536, pp.10-25. https://doi.org/10.1016/j.jhydrol.2016.02.030
  15. Park, D., Kim, I., Kim, G., and Lee, J. (2017), "Groundwater Effect Factors for the Load-carrying behavior of Footings from Hydraulic Chamber Load Tests", Geotechnical Testing Journal, Vol.30, No.3, pp.440-451.
  16. Park, D., Kim, I. Kim, G., and Lee, J. (2019), "Effect of Groundwater Fluctuation on Load Carrying Performance of Shallow Foundation", Geomechanics and Engineering, Vol.18, No.6, pp.575-584. https://doi.org/10.12989/GAE.2019.18.6.575
  17. Rajaee, T., Ebrahimi, H., and Nourani, V. (2019), "A Review of the Artificial Intelligence Methods in Groundwater Level Modeling", Journal of Hydrology, Vol.572, pp.336-351. https://doi.org/10.1016/j.jhydrol.2018.12.037
  18. Shahriar, M. A., Sivakugan, N., Das, B. M. Urquhart, A., and Tapiolas, M. (2014), "Water Table Correction Factors for Settlements of Shallow Foundations in Granular Soils", International J. of Geomechanics, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000391.
  19. Serrano, S. E. and Workman, S. R. (1998), "Modeling Transient Stream/aquifer Interaction with the Non-linear Boussinesq Equation and its Analytical Solution", Journal of Hydrology, Vol.206, pp. 145-255.
  20. Sahoo, S. and Jha, M. K. (2013), "Groundwater-level Prediction Using Multiple Linear Regression and Artificial Neural Network Techniques: A Comparative Assessment", Hydrogeology Journal, Vol.21, pp.1865-1887. https://doi.org/10.1007/s10040-013-1029-5
  21. Shamsudduha, M., Chandler, R. E., Taylor, R. G., and Ahmed, K. M. (2009), "Resent Trends in Groundwater Levels in a Highly Seasonal Hydrological System: The Ganges-Brahmaputra-Meghna Delta", Hydrology and Earth System Sciences, Vol.13, pp.2373-2385. https://doi.org/10.5194/hess-13-2373-2009
  22. Trichakis, I. C., Nikolos, I. K., and Karatzas, G. P. (2011), "Artificial Neural Network (ANN) based Modeling for Karstic Groundwater Level Simulation", Water Resources Management, Vol.25, pp.1143-1152. https://doi.org/10.1007/s11269-010-9628-6
  23. Uddameri, V. (2007), "Using Statistical and Artificial Neural Network Models to Forecast Potentiometric Levels at a Deep Well in South Texas", Environmental Geology, Vol.51, pp.885-895. https://doi.org/10.1007/s00254-006-0452-5
  24. Wen, X., Feng, Q., Yu, H., Wu, J., Si, J., Chang, Z., and Xi., C. (2015), "Wavelet and Adaptive Neuro-fuzzy Inference System Conjunction Model for Groundwater Level Predicting in a Coastal Aquifer", Neural Computing and Applications, Vol.26, pp.1203-1215. https://doi.org/10.1007/s00521-014-1794-7
  25. Wilhite, D. A. and Glants, M. H. (1985), "Understanding the Drought Phenomenon: The Role of Definitions", Water International, Vol.10, pp.110-120.
  26. Yang, J. S. and Kim, N. K. (2011), "The Correlation between the Moving Average of Precipitation and Groundwater Level in Korea", Korean Society of Civil Engineers, Vol.31, pp.265-276.
  27. Yasuhara, K., Murakami, S. Mimura, N. Komine, H., and Recio, J. (2007), "Influence of Global Warming on Coastal Infrastructural Instability", Sustainability Science, 2, pp.13-25. https://doi.org/10.1007/s11625-006-0015-4