Acknowledgement
The authors appreciatively acknowledge the support given through the University of Malaya Postgraduate Research Grant (Project No: GPF007F-2019). The author, Sumra Yousuf, also acknowledges the Bahauddin Zakariya University for funding.
References
- Adesina, P.A. and Olutoge, F.A. (2019), "Structural properties of sustainable concrete developed using rice husk ash and hydrated lime", J. Build. Eng., 25, 100804. https://doi.org/10.1016/j.jobe.2019.100804.
- Ahmad, M.R., Chen, B., Haque, M.A. and Oderji, S.Y. (2020), "Multiproperty characterization of cleaner and energy-efficient vegetal concrete based on one-part geopolymer binder", J. Clean. Prod., 253, 119916. https://doi.org/10.1016/j.jclepro.2019.119916.
- Ahmad, S. (2003), "Reinforcement corrosion in concrete structures, its monitoring and service life prediction-A review", Cement Concrete Compos., 25(4), 459-471. https://doi.org/10.1016/S0958-9465(02)00086-0.
- Alarcon-Ruiz, L., Platret, G., Massieu, E. and Ehrlacher, A. (2005), "The use of thermal analysis in assessing the effect of temperature on a cement paste", Cement Concrete Res., 35(3), 609-613. https://doi.org/10.1016/j.cemconres.2004.06.015.
- Allahverdi, A., Maleki, A. and Mahinroosta, M. (2018), "Chemical activation of slag-blended Portland cement", J. Build. Eng., 18, 76-83. https://doi.org/10.1016/j.jobe.2018.03.004.
- Aprianti, E., Shafigh, P., Zawawi, R. and Abu Hassan, Z.F. (2016), "Introducing an effective curing method for mortar containing high volume cementitious materials", Constr. Build. Mater., 107, 365-377. https://doi.org/10.1016/j.conbuildmat.2015.12.100.
- Asadi, I., Shafigh, P., Abu Hassan, Z.F.B. and Mahyuddin, N.B. (2018), "Thermal conductivity of concrete-A review", J. Build. Eng., 20, 81-93. https://doi.org/10.1016/j.jobe.2018.07.002.
- ASTM-C150 (2004), Standard Specification for Portland Cement. Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, USA.
- Barnett, S., Soutsos, M., Millard, S. and Bungey, J. (2006), "Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies", Cement Concrete Res., 36(3), 434-440. https://doi.org/10.1016/j.cemconres.2005.11.002.
- Barneyback Jr, R. and Diamond, S. (1981), "Expression and analysis of pore fluids from hardened cement pastes and mortars", Cement Concrete Res., 11(2), 279-285. https://doi.org/10.1016/0008-8846(81)90069-7.
- Batis, G., Pantazopoulou, P. and Routoulas, A. (2003), "Corrosion protection investigation of reinforcement by inorganic coating in the presence of alkanolamine-based inhibitor", Cement Concrete Compos., 25(3), 371-377. https://doi.org/10.1016/S0958-9465(02)00061-6.
- Bhattacharjee, B. and Krishnamoorthy, S. (2004), "Permeable porosity and thermal conductivity of construction materials", J. Mater. Civil Eng., 16(4), 322-330. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:4(322).
- Bickmore, B.R., Nagy, K.L., Gray, A.K. and Brinkerhoff, A.R. (2006), "The effect of Al (OH) 4-on the dissolution rate of quartz", Geochimica et Cosmochimica Acta, 70(2), 290-305. https://doi.org/10.1016/j.gca.2005.09.017.
- Bui, P.T., Ogawa, Y., Nakarai, K. and Kawai, K. (2015), "A study on pozzolanic reaction of fly ash cement paste activated by an injection of alkali solution", Constr. Build. Mater., 94, 28-34. https://doi.org/10.1016/j.conbuildmat.2015.06.046.
- Carslaw, H.S., and Jaeger, J.C. (1959), Conduction of Heat in Solids, Clarendon Press.
- Chindaprasirt, P., Jaturapitakkul, C. and Sinsiri, T. (2005), "Effect of fly ash fineness on compressive strength and pore size of blended cement paste", Cement Concrete Compos., 27(4), 425-428. https://doi.org/10.1016/j.cemconcomp.2004.07.003.
- Chore, H. and Joshi, M. (2015), "Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials", Adv. Concrete Constr., 3(3), 223. http://doi.org/10.12989/acc.2015.3.3.223
- D5334-08:2014, A. (2014), Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, ASTM International, 5334, 1-8.
- Day, K.W., Aldred, J. and Hudson, B., (2013), Concrete Mix Design, Quality Control and Specification, CRC Press.
- De la Varga, I., Castro, J., Bentz, D. and Weiss, J. (2012), "Application of internal curing for mixtures containing high volumes of fly ash", Cement Concrete Compos., 34(9), 1001- 1008. https://doi.org/10.1016/j.cemconcomp.2012.06.008.
- Djelloul, O.K., Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete Constr., 6(2), 103. http://doi.org/10.12989/acc.2018.6.2.103.
- Dove, P.M. (1994), "The dissolution kinetics of quartz in sodium chloride solutions at 25 degrees to 300 degrees C", Am. J. Sci., 294(6), 665-712. https://doi.org/10.2475/ajs.294.6.665
- El-Didamony, H., Amer, A.A., Mohammed, M.S. and El-Hakim, M.A. (2019), "Fabrication and properties of autoclaved aerated concrete containing agriculture and industrial solid wastes", J. Build. Eng., 22, 528-538. https://doi.org/10.1016/j.jobe.2019.01.023.
- Elahi, A., Basheer, P.A.M., Nanukuttan, S.V. and Khan, Q.U.Z. (2010), "Mechanical and durability properties of high performance concretes containing supplementary cementitious materials", Constr. Build. Mater., 24(3), 292-299. https://doi.org/10.1016/j.conbuildmat.2009.08.045.
- Fan, C. and Miller, S.A. (2018), "Reducing greenhouse gas emissions for prescribed concrete compressive strength", Constr. Build. Mater., 167, 918-928. https://doi.org/10.1016/j.conbuildmat.2018.02.092.
- Fan, Y., Yin, S., Wen, Z. and Zhong, J. (1999), "Activation of fly ash and its effects on cement properties1", Cement Concrete Res., 29(4), 467-472. https://doi.org/10.1016/S0008-8846(98)00178-1.
- Gao, J.M., Qian, C.X., Liu, H.F., Wang, B. and Li, L. (2005), "ITZ microstructure of concrete containing GGBS", Cement Concrete Res., 35(7), 1299-1304. https://doi.org/10.1016/j.cemconres.2004.06.042.
- George, R.P. (2012), "Current understanding and future approaches for controlling microbially influenced concrete corrosion: a review", Concrete Res. Lett., 3(3), 491-506.
- He, X., Ma, M., Su, Y., Lan, M., Zheng, Z., Wang, T., . . . Zeng, S. (2018), "The effect of ultrahigh volume ultrafine blast furnace slag on the properties of cement pastes", Constr. Build. Mater., 189, 438-447. https://doi.org/10.1016/j.conbuildmat.2018.09.004.
- Hilal, A.A. (2016), "Microstructure of concrete", High Performance Concrete Technology and Applications, 3-24.
- Hobbs, D. (2001), "Concrete deterioration: causes, diagnosis, and minimising risk", Int. Mater. Rev., 46(3), 117-144. https://doi.org/10.1179/095066001101528420.
- Isaia, G.C., Gastaldini, A.L.G. and Moraes, R. (2003), "Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete", Cement Concrete Compos., 25(1), 69-76. https://doi.org/10.1016/S0958-9465(01)00057-9.
- Grubb, J.A., Limaye, H.S. and Kakade, A.M. (2007), "Testing pH of concrete", Concrete Int., 29(4), 78-83.
- KD2Pro. (2006), KD2 Pro Thermal Properties Analyzer, Operator's Manual, Version 4, Decagon Devices Inc., Pullman, Wash.
- Kluitenberg, G., Ham, J. and Bristow, K.L. (1993), "Error analysis of the heat pulse method for measuring soil volumetric heat capacity", Soil Sci. Soc. Am. J., 57(6), 1444-1451. https://doi.org/10.2136/sssaj1993.03615995005700060008x.
- Liu, X., Niu, D., Li, X., Lv, Y. and Fu, Q.J.A.S. (2018), "Pore solution pH for the corrosion initiation of rebars embedded in concrete under a long-term natural carbonation reaction", Appl. Sci., 8(1), 128. https://doi.org/10.3390/app8010128.
- Lizarazo-Marriaga, J., Claisse, P. and Ganjian, E. (2010), "Effect of steel slag and Portland cement in the rate of hydration and strength of blast furnace slag pastes", J. Mater. Civil Eng., 23(2), 153-160. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000149.
- Lo, T.Y., Tang, W.C. and Nadeem, A. (2008), "Comparison of carbonation of lightweight concrete with normal weight concrete at similar strength levels", Constr. Build. Mater., 22(8), 1648-1655. https://doi.org/10.1016/j.conbuildmat.2007.06.006.
- Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
- Lothenbach, B. and Winnefeld, F. (2006), "Thermodynamic modelling of the hydration of Portland cement", Cement Concrete Res., 36(2), 209-226. https://doi.org/10.1016/j.cemconres.2005.03.001.
- Malhotra, V.M. and Mehta, P.K. (2014), Pozzolanic and Cementitious Materials, CRC Press.
- Matalkah, F., Salem, T. and Soroushian, P. (2018), "Acid resistance and corrosion protection potential of concrete prepared with alkali aluminosilicate cement", J. Build. Eng., 20, 705-711. https://doi.org/10.1016/j.jobe.2018.08.001.
- McPolin, D., Basheer, P. and Long, A. (2009), "Carbonation and pH in mortars manufactured with supplementary cementitious materials", J. Mater. Civil Eng., 21(5), 217-225. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:5(217).
- Meyer, C. (2009), "The greening of the concrete industry", Cement Concrete Compos., 31(8), 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010.
- Mohammed, T.U., Otsuki, N. and Hamada, H. (2003), "Corrosion of steel bars in cracked concrete under marine environment", J. Mater. Civil Eng., 15(5), 460-469. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(460).
- Mojumdar, S.C. and Janotka, I.J.A.P.S. (2002), "Thermophysical properties of blends from Portland and sulfoaluminate-belite cements", Acta Physica Slovaca, 52(5), 435-446.
- Mounanga, P., Khelidj, A., Loukili, A. and Baroghel-Bouny, V. (2004), "Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach", Cement Concrete Res., 34(2), 255-265. https://doi.org/10.1016/j.cemconres.2003.07.006.
- Nath, P. and Sarker, P.K. (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080.
- Oner, A. and Akyuz, S. (2007), "An experimental study on optimum usage of GGBS for the compressive strength of concrete", Cement Concrete Compos., 29(6), 505-514. https://doi.org/10.1016/j.cemconcomp.2007.01.001.
- Ormellese, M., Berra, M., Bolzoni, F. and Pastore, T. (2006), "Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures", Cement Concrete Res., 36(3), 536-547. https://doi.org/10.1016/j.cemconres.2005.11.007.
- Otieno, M., Beushausen, H. and Alexander, M. (2014), "Effect of chemical composition of slag on chloride penetration resistance of concrete", Cement Concrete Compos., 46, 56-64. https://doi.org/10.1016/j.cemconcomp.2013.11.003.
- Pacheco Torgal, F., Miraldo, S., Labrincha, J.A. and De Brito, J. (2012), "An overview on concrete carbonation in the context of eco-efficient construction: evaluation, use of SCMs and/or RAC", Constr. Build. Mater., 36, 141-150. https://doi.org/10.1016/j.conbuildmat.2012.04.066.
- Powers, T.C. and Helmuth, R. (1953), Theory of Volume Changes in Hardened Portland-cement Paste during Freezing, Highway Research Board Proceedings.
- Ramezanianpour, A.A. and Malhotra, V.M. (1995), "Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume", Cement Concrete Compos., 17(2), 125-133. https://doi.org/10.1016/0958-9465(95)00005-W.
- Rashad, A.M. (2015), "An investigation on very high volume slag pastes subjected to elevated temperatures", Constr. Build. Mater., 74, 249-258. https://doi.org/10.1016/j.conbuildmat.2014.10.019.
- Roberts, D., Nica, D., Zuo, G. and Davis, J. (2002), "Quantifying microbially induced deterioration of concrete: initial studies", Int. Biodeteriorat. Biodegrad., 49(4), 227-234. https://doi.org/10.1016/S0964-8305(02)00049-5.
- Shehata, M.H. and Thomas, M.D.A. (2000), "The effect of fly ash composition on the expansion of concrete due to alkali-silica reaction", Cement Concrete Res., 30(7), 1063-1072. https://doi.org/10.1016/S0008-8846(00)00283-0.
- Siddique, R. (2004), "Performance characteristics of high-volume Class F fly ash concrete", Cement Concrete Res., 34(3), 487-493. https://doi.org/10.1016/j.cemconres.2003.09.002.
- Siddique, R. and Bennacer, R. (2012), "Use of iron and steel industry by-product (GGBS) in cement paste and mortar", Resour. Conserv. Recyc., 69, 29-34. https://doi.org/10.1016/j.resconrec.2012.09.002.
- Siler, P., Kolarova, I., Sehnal, T., Masilko, J. and Opravil, T. (2016), "The determination of the influence of pH value of curing conditions on Portland cement hydration", Procedia Eng., 151, 10-17. https://doi.org/10.1016/j.proeng.2016.07.393.
- Standard, B. (1881), Part-116 (1983) Method for Determination of Compressive Strength of Concrete Cubes, London.
- Sua-iam, G. and Makul, N. (2017), "Incorporation of high-volume fly ash waste and high-volume recycled alumina waste in the production of self-consolidating concrete", J. Clean. Prod., 159, 194-206. https://doi.org/10.1016/j.jclepro.2017.05.075.
- Thomas, M. (2011), "The effect of supplementary cementing materials on alkali-silica reaction: a review", Cement Concrete Res., 41(12), 1224-1231. https://doi.org/10.1016/j.cemconres.2010.11.003
- Tong, X.C. (2011), "Characterization methodologies of thermal management materials", Advanced Materials for Thermal Management of Electronic Packaging, Springer New York, New York, NY.
- Topcu, I.B. and Canbaz, M. (2007), "Effect of different fibers on the mechanical properties of concrete containing fly ash", Constr. Build. Mater., 21(7), 1486-1491. https://doi.org/10.1016/j.cemconres.2010.11.003.
- Wang, H.Y. (2008), "The effects of elevated temperature on cement paste containing GGBFS", Cement Concrete Compos., 30(10), 992-999. https://doi.org/10.1016/j.cemconcomp.2007.12.003.
- Xu, H., Liu, Y., Chen, W., Du, R.G. and Lin, C.J. (2009), "Corrosion behavior of reinforcing steel in simulated concrete pore solutions: A scanning micro-reference electrode study", Electrochimica Acta, 54(16), 4067-4072. https://doi.org/10.1016/j.electacta.2009.02.046.
- Yahiaoui, W., Kenai, S., Menadi, B. and Kadri, E.H. (2017), "Durability of self compacted concrete containing slag in hot climate", Adv. Concrete Constr., 5(3), 271. http://doi.org/10.12989/acc.2017.5.3.271.
- Younsi, A., Turcry, P., Ait-Mokhtar, A. and Staquet, S. (2013), "Accelerated carbonation of concrete with high content of mineral additions: Effect of interactions between hydration and drying", Cement Concrete Res., 43, 25-33. https://doi.org/10.1016/j.cemconres.2012.10.008.
- Zhang, W., Min, H., Gu, X., Xi, Y. and Xing, Y. (2015), "Mesoscale model for thermal conductivity of concrete", Constr. Build. Mater., 98, 8-16. https://doi.org/10.1016/j.conbuildmat.2015.08.106.