Acknowledgement
This work was supported by the Natural Science Foundation of Heilongjiang Province of China (grant no. ZD2016004), the Scientific Research Team Support Plan of Heilongjiang Bayi Agricultural University (grant no. TDJH201810), the Project of Natural Science Fund Joint Guidance of Heilongjiang Province of China (grant no. LH2019C047) and the Start-Up Fund Plan of Studying Abroad Returning National Research (grant no. ZRCLG201905).
References
- Raabe VN, Shane AL. 2019. Group B Streptococcus (Streptococcus agalactiae). Microbiol. Spectr. 7: 10.1128/microbiolspec.GPP3-0007-2018.
- Rosen GH, Randis TM, Desai PV, Sapra KJ, Ma B, Gajer P, et al. 2017. Group B Streptococcus and the vaginal microbiota. J. Infect. Dis. 216: 744-751. https://doi.org/10.1093/infdis/jix395
- Khan MA, Faiz A, Ashshi AM. 2015. Maternal colonization of group B streptococcus: prevalence, associated factors and antimicrobial resistance. Ann. Saudi Med. 35: 423-427. https://doi.org/10.5144/0256-4947.2015.423
- Melin P. 2011. Neonatal group B streptococcal disease: from pathogenesis to preventive strategies. Clin. Microbiol. Infect. 17: 1294-1303. https://doi.org/10.1111/j.1469-0691.2011.03576.x
- Edmond KM, Kortsalioudaki C, Scott S, Schraf SJ, Zaidi AKM, Cousens S, et al. 2012. Group B streptococcal disease in infants aged younger than 3 months: systematic review and meta-analysis. Lancet 379: 547-556. https://doi.org/10.1016/S0140-6736(11)61651-6
- Seale AC, Blencowe H, Bianchi-Jassir F, Embleton N, Bassat Q, Ordi J, et al. 2017. Stillbirth with group B Streptococcus disease worldwide: systematic review and meta-analyses. Clin. Infect. Dis. 65(suppl_2): S125-S132. https://doi.org/10.1093/cid/cix585
- Pitts SI, Maruthur NM, Langley GE, Pondo T, Shutt KA, Hollick R, et al. 2018. Obesity, diabetes, and the risk of invasive group B Streptococcal disease in nonpregnant adults in the United States. Open Forum Infect. Dis. 5: ofy030. https://doi.org/10.1093/ofid/ofy030
- Doran KS, Nizet V. 2004. Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy. Mol. Microbiol. 54: 23-31. https://doi.org/10.1111/j.1365-2958.2004.04266.x
- Francois Watkins LK, McGee L, Schrag SJ, Bella B, Jian JH, Pondo T, et al. 2019. Epidemiology of invasive group B Streptococcal infections among nonpregnant adults in the United States. 2008-2016. JAMA Intern. Med.179: 479-488. https://doi.org/10.1001/jamainternmed.2018.7269
- Sendi P, Johansson L, Norrby-Teglund A. 2008. Invasive group B Streptococcal disease in non-pregnant adults : a review with emphasis on skin and soft-tissue infections. Infection 36: 100-111. https://doi.org/10.1007/s15010-007-7251-0
- Randis TM, Baker JA, Ratner AJ. 2017. Group B Streptococcal infections. Pediatr. Rev. 38: 254-262. https://doi.org/10.1542/pir.2016-0127
- Le Doare K, Heath PT. 2013. An overview of global GBS epidemiology. Vaccine 31 Suppl 4: D7-12. https://doi.org/10.1016/j.vaccine.2013.01.009
- Mian GF, Godoy DT, Leal CA, Yuhara TY, Costa GM, Figueiredo HCP. 2009. Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Vet. Microbiol. 136: 180-183. https://doi.org/10.1016/j.vetmic.2008.10.016
- Elliott JA, Facklam RR, Richter CB. 1990. Whole-cell protein patterns of nonhemolytic group B, type Ib, streptococci isolated from humans, mice, cattle, frogs, and fish. J. Clin. Microbiol. 28: 628-630. https://doi.org/10.1128/jcm.28.3.628-630.1990
- Yildirim AO, Lammler C, Weiss R, Kopp P. 2002. Pheno- and genotypic properties of streptococci of serological group B of canine and feline origin. FEMS Microbiol. Lett. 212: 187-192. https://doi.org/10.1111/j.1574-6968.2002.tb11265.x
- Hogeveen H, Huijps K, Lam TJ. 2011. Economic aspects of mastitis: new developments. NZ Vet. J. 59: 16-23. https://doi.org/10.1080/00480169.2011.547165
- Keefe GP. 1997. Streptococcus agalactiae mastitis: a review. Can. Vet. J. 38: 429-437.
- Gao J, Barkema HW, Zhang L, Liu G, Deng Z, Cai L, et al. 2017. Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. J. Dairy Sci. 100: 4797-4806. https://doi.org/10.3168/jds.2016-12334
- Manning SD, Springman AC, Million AD, Millton NR, McNamara SE, Somsel PA, et al. 2010. Association of Group B Streptococcus colonization and bovine exposure: a prospective cross-sectional cohort study. PLoS One 5: e8795. https://doi.org/10.1371/journal.pone.0008795
- Cobo-Angel CG, Jaramillo-Jaramillo AS, Palacio-Aguilera M, Jurado-Vargas L, Calvo-Villegas EA, Ospina-Loaiza DA, et al. 2019. Potential group B Streptococcus interspecies transmission between cattle and people in Colombian dairy farms. Sci. Rep. 9: 14025. https://doi.org/10.1038/s41598-019-50225-w
- Longtin J, Vermeiren C, Shahinas D, Tamber GS, McGeer A, Low DE, et al. 2011. Novel mutations in a patient isolate of Streptococcus agalactiae with reduced penicillin susceptibility emerging after long-term oral suppressive therapy. Antimicrob. Agents Chemother. 55: 2983-2985. https://doi.org/10.1128/AAC.01243-10
- Kimura K, Matsubara K, Yamamoto G, Shibayama K, Arakawa Y. 2013. Active screening of group B streptococci with reduced penicillin susceptibility and altered serotype distribution isolated from pregnant women in Kobe, Japan. Jpn. J. Infect. Dis. 66: 158-160. https://doi.org/10.7883/yoken.66.158
- Al Sweih N, Mokaddas E, Jamal W, Phillips OA, Rotimi VO. 2005. In vitro activity of linezolid and other antibiotics against Grampositive bacteria from the major teaching hospitals in Kuwait. J. Chemother. 17: 607-613. https://doi.org/10.1179/joc.2005.17.6.607
- Teti G, Mancuso G, Tomasello F. 1993. Cytokine appearance and effects of anti-tumor necrosis factor alpha antibodies in a neonatal rat model of group B streptococcal infection. Infect. Immun. 61: 227-235. https://doi.org/10.1128/iai.61.1.227-235.1993
- Clarke D, Letendre C, Lecours MP, Lemire P, Galbas T, Thibodeau J, et al. 2016. Group B Streptococcus induces a rbust IFN-gamma response by CD4(+) T cells in an In Vitro and In Vivo model. J. Immunol. Res. 2016: 5290604. https://doi.org/10.1155/2016/5290604
- Cusumano V, Mancuso G, Genovese F, Delfino D, Beninati E, Losi E, et al. 1996. Role of gamma interferon in a neonatal mouse model of group B streptococcal disease. Infect. Immun. 64: 2941-2944. https://doi.org/10.1128/iai.64.8.2941-2944.1996
- Walsh KP, Mills KH. 2013. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 34: 521-530. https://doi.org/10.1016/j.it.2013.07.006
- KornT, Bettelli E, Oukka M, Kuchroo VK. 2009. IL-17 and Th17 Cells, Annu Rev. Immunol. 27: 485-517. https://doi.org/10.1146/annurev.immunol.021908.132710
- Bettelli E, Korn T, Kuchroo VK. 2007. Th17: the third member of the effector T cell trilogy. Curr. Opin. Immunol. 19: 652-657. https://doi.org/10.1016/j.coi.2007.07.020
- Yasuda K, Takeuchi Y, Hirota K. 2019. The pathogenicity of Th17 cells in autoimmune diseases. Semin. Immunopathol. 41: 283-297. https://doi.org/10.1007/s00281-019-00733-8
- Szulc-Dabrowska L, Gierynska M, Depczynska D, Schollenberger A, Toka FN. 2015. [Th17 lymphocytes in bacterial infections], Postepy Hig. Med. Dosw. (Online). 69: 398-417. https://doi.org/10.5604/17322693.1147868
- Li Y, Wei C, Xu H, Jia J, Wei X, Gou R, et al. 2018. The immunoregulation of Th17 in host against intracellular bacterial infection, Mediators Inflamm. 2018: 6587296. https://doi.org/10.1155/2018/6587296
- Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M, et al. 2012. Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 484: 514-518. https://doi.org/10.1038/nature10957
- Ishigame H, Kakuta S, Nagai T, Kadoki M, Nam,bu A, Komiyama Y, et al. 2009. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30: 108-119. https://doi.org/10.1016/j.immuni.2008.11.009
- Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A. 2010, IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J. Immunol. 185: 5453-5462. https://doi.org/10.4049/jimmunol.1001153
- Ye P, Garvey PB, Zhang P, Nelson S, Bagby G, Summer WR, et al. 2001. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am. J. Respir. Cell Mol. Biol. 25: 335-340. https://doi.org/10.1165/ajrcmb.25.3.4424
- Ziegler SF, Ramsdell F, Alderson MR. 1994. The activation antigen CD69. Stem Cells 12: 456-465. https://doi.org/10.1002/stem.5530120502
- Wang B, Dileepan T, Briscoe S, Hyland KA, Kang J, Khoruts A, et al. 2010. Induction of TGF-beta1 and TGF-beta1-dependent predominant Th17 differentiation by group A streptococcal infection. Proc. Natl. Acad. Sci. USA. 107: 5937-5942. https://doi.org/10.1073/pnas.0904831107
- Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, et al. 2008. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454: 350-352. https://doi.org/10.1038/nature07021
- Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235-238. https://doi.org/10.1038/nature04753
- Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179-189. https://doi.org/10.1016/j.immuni.2006.01.001
- McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, et al. 2007. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 8: 1390-1397. https://doi.org/10.1038/ni1539
- Mangan PR, Harrington LE, O'Quinn DB, helms WS, Bullard DC,Elson Co, et al. 2006. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441: 231-234. https://doi.org/10.1038/nature04754
- Fooksman DR. 2014. Organizing MHC Class II Presentation. Front. Immunol. 5: 158. https://doi.org/10.3389/fimmu.2014.00158
- Conti HR, Gaffen SL. 2015. IL-17-Mediated immunity to the opportunistic fungal pathogen Candida albicans. J. Immunol. 195: 780-788. https://doi.org/10.4049/jimmunol.1500909
- Yu W, Yao D, Yu S, Wang X, Li X, Wang M, et al. 2018. Protective humoral and CD4+ T cellular immune responses of Staphylococcus aureus vaccine MntC in a murine peritonitis model. Sci. Rep. 8: 3580. https://doi.org/10.1038/s41598-018-22044-y
- Bai H, Cheng J, Gao X, Joyee AG, Fan Y, Wang S, et al. 2009. IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function. J. Immunol. 183: 5886-5895. https://doi.org/10.4049/jimmunol.0901584
- Zhang X, Gao L, Lei L, Zhong Y, Dube P, Berton MT, et al. 2009. A MyD88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen Chlamydia muridarum. J. Immunol. 183: 1291-300. https://doi.org/10.4049/jimmunol.0803075
- Lin JS, Kummer LW, Szaba FM, Smiley ST. 2011. IL-17 contributes to cell-mediated defense against pulmonary Yersinia pestis infection. J. Immunol. 186: 1675-1684. https://doi.org/10.4049/jimmunol.1003303
- Lu YJ, Gross J, Bogaert D, Finn A, Bagrase L, Zhang Q, et al. 2008. Interleukin-17A mediates acquired immunity to pneumococcal colonization, PLoS Pathog. 4: e1000159. https://doi.org/10.1371/journal.ppat.1000159
- Beringer A, Noack M, Miossec P. 2016. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol. Med. 22: 230-241. https://doi.org/10.1016/j.molmed.2016.01.001
- Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, et al. 2007. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur. J. Immunol. 37: 2695-2706. https://doi.org/10.1002/eji.200737409
- Chai LY, van de Veerdonk F, Marijnissen RJ, Cheng S-C, Khoo AL, Hectors M, et al. 2010. Anti-aspergillus human host defence relies on type 1 T helper (Th1), rather than type 17 T helper (Th17), cellular immunity. Immunology 130: 46-54. https://doi.org/10.1111/j.1365-2567.2009.03211.x
- Arachchi PS, Fernando N, Weerasekera MM, Senevirathna B, Weerasekera DD, Gunasekara CP. 2017. Proinflammatory cytokine IL-17 shows a significant association with Helicobacter pylori infection and disease severity. Gastroenterol. Res. Pract. 2017: 6265150.