DOI QR코드

DOI QR Code

Development of Adsorbent for Vapor Phase Elemental Mercury and Study of Adsorption Characteristics

증기상 원소수은의 흡착제 개발 및 흡착특성 연구

  • Cho, Namjun (School of Energy Materilas & Chemical Engineering, Korea University of Technology & Education)
  • 조남준 (한국기술교육대학교 에너지신소재.화학공학부)
  • Received : 2021.02.03
  • Accepted : 2021.05.07
  • Published : 2021.05.31

Abstract

Mercury, once released, is not destroyed but accumulates and circulates in the natural environment, causing serious harm to ecosystems and human health. In the United States, sulfur-impregnated activated carbon is being considered for the removal of vapor mercury from the flue gas of coal-fired power plants, which accounts for about 32 % of the anthropogenic emissions of mercury. In this study, a high-efficiency porous mercury adsorption material was developed to reduce the mercury vapor in the exhaust gas of coal combustion facilities, and the mercury adsorption characteristics of the material were investigated. As a result of the investigation of the vapor mercury adsorption capacity at 30℃, the silica nanotube MCM-41 was only about 35 % compared to the activated carbon Darco FGD commercially used for mercury adsorption, but it increased to 133 % when impregnated with 1.5 % sulfur. In addition, the furnace fly ash recovered from the waste copper regeneration process showed an efficiency of 523 %. Furthermore, the adsorption capacity was investigated at temperatures of 30 ℃, 80 ℃, and 120 ℃, and the best adsorption performance was found to be 80 ℃. MCM-41 is a silica nanotube that can be reused many times due to its rigid structure and has additional advantages, including no possibility of fire due to the formation of hot spots, which is a concern when using activated carbon.

한번 배출된 수은은 소멸되지 않고 자연환경에 축적 및 순환되며 생태계 및 인류보건에 심각한 위해를 준다. 미국에서는 수은의 인위적 배출량의 약 32 %를 차지하는 것으로 알려진 석탄 화력발전소의 배출가스의 증기수은 제거를 위해 황점착 활성탄 사용을 고려하고 있다. 본 연구애서는 석탄 연소설비 배출가스 중의 증기상의 원소수은을 저감하기 위한 고효율의 다공성 수은흡착 소재를 개발하여 소재의 수은 흡착 특성을 조사하였다. 30℃에서 증기수은 흡착능 조사결과 수은흡착용으로 상용화된 활성탄 Darco FGD 대비 실리카 나노소재인 MCM-41의 경우는 약 35 %에 불과하였으나 황을 1.5% 함침한 경우 133 %까지 증가하였고, 폐동 재생공정에서 회수한 용광로 비산재의 경우는 523 %의 효율을 보였다. 또한 30 ℃, 80 ℃ 및 120 ℃의 온도에서 흡착능을 조사한 결과 80 ℃에서 가장 우수한 흡착성능을 나타냈다. MCM-41은 실리카 나노튜브로 구조가 견고해 여러 번 재사용할 수 있을 뿐더러 활성탄을 사용할 경우 우려되는 열점형성으로 인한 화재 가능성이 없어 추가적인 장점까지 지니고 있다.

Keywords

Acknowledgement

본 논문은 한국기술교육대학교 교육연구진흥과제로 수행되었음.

References

  1. M. C. Ferens, "Review of the Physiological Impact of Mercury", US Environmental Protection Agency, US Gov. Printing Office, Washington D.C. 1997.
  2. K. M. Rice, E. M. Walker, M. Wu, C. Gillette, E. R. Blough, "Environmental mercury and its toxic effects", J. Prev. Med. Public Health, Vol.47, No.2, pp.74-83, March 2014. DOI: http://dx.doi.org/10.3961/jpmph.2014.47.2.74
  3. Z. M. Siddiqi, "Transport and fate of mercury in the environment", Handbook of Environmental Materials Management, pp.1-20, Springer, 10 January 2018.
  4. J. M. Pacyna, J. Munthe, "Summary of research projects on mercury funded by European Commission DG Research", Workshop on Mercury: needs for further international environmental agreements, Brussels, 29-30, March 2004.
  5. Control of mercury emissions from coal fired electric utility boilers: an update, Air pollution prevention & control division, U.S. Environmental Protection Agency; 2005.
  6. J. Yang, Y. Zhao, S. Zhang, C. Zheng, ect., 'Mercury removal from flue gas by magnetospheres present in fly ash: role of iron species and modification by HF', Fuel Process. Technol., Vol.167 pp.263-270, 2017. https://doi.org/10.1016/j.fuproc.2017.07.016
  7. J. Y. Park, Study of Mercury Emissions from the Exhaust of Coal-fired Power Plants and Automobiles, Master's thesis, Yonsei Uinvesity, Korea, June 2006.
  8. J. H. Lee, Study on the emission characteristics of mercury compounds from anthropogenic sources and laboratory furnace, Yonsei Uinvesity, Korea, July 2006.
  9. Y.-I. Yoon, W.-K. Choi, S.-H. Lee, H.-K. Lee, "Status of Combined SOx, NOx and Mercury Control Technology from the Fule Gas", Prospectives of Industrial Chemistry, Vol.8 No.1, pp.12-25, 2005.
  10. E. S. Edgerton, B. E. Hartsell, J. J. Jansen, 'Mercury Speciation in Coal-fired Power Plant Plumes Observed at Three Surface Sites in the Southeastern U.S.', Environ. Sci. Technol., Vol.40, No.15, pp.4563-4570, 2006. DOI: https://doi.org/10.1021/es0515607
  11. M. Attari, S. S. Bukhari, H. Kazemian, S. Rohani, "A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater", Journal of Environmental Chemical Engineering, Vol.5, pp.391-399, 2017. https://doi.org/10.1016/j.jece.2016.12.014
  12. S. Vitolo, R. Pini, "Deposition of sulfur from H2S on porous adsorbents and e ect on their mercury adsorption capacity", Geothermics Vol.28, pp.341-354, 1999. https://doi.org/10.1016/S0375-6505(99)00012-7
  13. C. Lee, "Development of high efficiency adsorbent, injection system and adsorbent coated filter for control of Hg on coal-fired power plants", Technical Report-2013000110002, Korea Environmental Industry & Technology Institute, Korea, June 2015.
  14. B. Padak, M. Brunetti, A. Lewis, J. Wilcox, "Mercury binding on activated carbon", Environ Prog, Vol.25, pp.319-326, 2006. https://doi.org/10.1002/ep.10165
  15. Z. Tan, L. Sun, J. Xiang, H. Zeng, J. Qiu, "Gas- phase elemental mercury removal by novel carbon- based sorbents", Carbon, Vol.50, pp.362-371, 2012. https://doi.org/10.1016/j.carbon.2011.08.036