DOI QR코드

DOI QR Code

축 방향 충격을 받는 박판 파형관의 충돌안전도 해석 및 형상 최적설계

Crashworthiness Analysis and Shape Design Optimization of Thin-walled Corrugated Tubes under Axial Impact

  • 안승호 (한국철도기술연구원 중대사고대응기술연구팀) ;
  • 정현승 (한국철도기술연구원 중대사고대응기술연구팀) ;
  • 김진성 (한국철도기술연구원 중대사고대응기술연구팀) ;
  • 손승완 (한국철도기술연구원 시설안전팀)
  • Ahn, Seung Ho (Railroad Major Accident Research Team, Korea Railroad Research Institute) ;
  • Jung, Hyun Seung (Railroad Major Accident Research Team, Korea Railroad Research Institute) ;
  • Kim, Jin Sung (Railroad Major Accident Research Team, Korea Railroad Research Institute) ;
  • Son, Seung Wan (Infrastructure Safety Team, Korea Railroad Research Institute)
  • 투고 : 2021.02.02
  • 심사 : 2021.05.07
  • 발행 : 2021.05.31

초록

박판관은 충돌안전을 위한 에너지 흡수장치 중의 하나로써 가벼우면서도 에너지 흡수 효율이 좋아 널리 이용되어 왔다. 그러나 일반적인 박판관은 충돌 초기 피크하중(IPCF: Initial Peak Crushing Force)이 높게 유발될 뿐 아니라 반복적으로 나타나는 피크하중으로 인하여 충돌에너지 흡수장치로써의 안정성이 다소 떨어진다는 단점이 있다. 충돌 초기 피크하중을 감소시키고 충돌에너지 흡수장치의 안정성을 키우기 위하여 박판 파형관이 도입되었다. 파형관의 성능은 기하 형상에 큰 영향을 받기 때문에 최적설계 기법을 적용하여 파형관의 성능을 최적화할 수 있다. 본 논문에서는 충돌안전도 해석에 기반한 형상 최적설계를 수행하기 위하여 적응 근사모델(adaptive surrogate model)을 활용한 최적설계 기법을 활용하였다. 파형의 진폭 및 파장 뿐 아니라 형상의 곡률 변화를 설계 변수로써 고려하였다. 형상 설계 매개변수화를 수행하기 위하여 몰핑(morphing) 방법을 채택하였다. 수치 예제를 통해서 적응 근사모델에 기반한 최적설계 결과와 기존 근사모델에 기반한 최적설계 결과를 비교하고 적응 근사모델에 기반한 최적설계 방법이 좀 더 효율적인 결과를 도출함을 보였다.

Thin-walled tubes have been widely used as energy absorbing devices because they are light and have high energy-absorption efficiency. However, the downside is that conventional thin-walled tubes usually exhibit an excessive initial peak crushing force (IPCF) and a large fluctuation in the load-displacement curve, and thus lack stability as energy absorbing devices. Corrugated tubes were introduced to reduce IPCF and to increase the stability of collision energy-absorbing devices. Since the performance of corrugated tubes is highly influence by geometry, design optimization methods can be utilized to optimize the performance of corrugated tubes. In this paper, we utilize shape design optimization based on an adaptive surrogate model for crashworthiness analysis. The amplitude and wavelength of the corrugation, as well as curvature changes in the features, are the design variables. A morphing methodology is adopted to perform shape design parameterization. Through numerical examples, we compare optimal design results based on the adaptive surrogate model, with optimal results based on conventional surrogate models, and we show that direct optimal design methods produce more efficient results.

키워드

과제정보

본 논문은 한국철도기술연구원 주요사업 연구비 지원으로 수행되었습니다.

참고문헌

  1. Abramowicz, Wlodzimierz, and Norman Jones. "Dynamic progressive buckling of circular and square tubes." International Journal of Impact Engineering, Vol.4, No.4, pp.243-270, Jul. 1986. DOI: https://doi.org/10.1016/0734-743X(86)90017-5
  2. Wierzbicki, T., and S. U. Bhat. "A moving hinge solution for axisymmetric crushing of tubes." International journal of mechanical sciences, Vol.28, No.3, pp.135-151, Jul. 1986. DOI: https://doi.org/10.1016/0020-7403(86)90033-0
  3. Wierzbicki, Tomasz, et al. "Alexander revisited-a two folding elements model of progressive crushing of tubes." International Journal of Solids and Structures, Vol.29, No.24, pp.3269-3288, Apr. 1992. DOI: https://doi.org/10.1016/0020-7683(92)90040-Z
  4. Hao, Wenqian, et al. "Analytical model of thin-walled corrugated tubes with sinusoidal patterns under axial impacting." International Journal of Mechanical Sciences, Vol.128, pp.1-16, Mar. 2017. DOI: https://doi.org/10.1016/j.ijmecsci.2017.03.033
  5. Hao, Wenqian, Jiamiao Xie, and Fenghui Wang. "Theoretical prediction of the progressive buckling and energy absorption of the sinusoidal corrugated tube subjected to axial crushing." Computers & Structures, Vol.191, pp.12-21, May. 2017. DOI: https://doi.org/10.1016/j.compstruc.2017.05.001
  6. Alkhatib, Sami E., et al. "Deformation modes and crashworthiness energy absorption of sinusoidally corrugated tubes manufactured by direct metal laser sintering." Engineering Structures, Vol.201, 109838, Oct. 2019. DOI: https://doi.org/10.1016/j.engstruct.2019.109838
  7. San Ha, Ngoc, and Guoxing Lu. "Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics." Thin-Walled Structures, Vol.157, 106995, Jul. 2020. DOI: https://doi.org/10.1016/j.tws.2020.106995
  8. Wu, Shengyin, et al. "Crashworthiness analysis and optimization of sinusoidal corrugation tube." Thin-Walled Structures, Vol.105, pp.121-134, Mar. 2016. DOI: https://doi.org/10.1016/j.tws.2016.03.029
  9. Deng, Xiaolin, Wangyu Liu, and Lin Jin. "On the crashworthiness analysis and design of a lateral corrugated tube with a sinusoidal cross-section." International Journal of Mechanical Sciences, Vol.141, pp.330-340, Mar. 2018. DOI: https://doi.org/10.1016/j.ijmecsci.2018.03.001
  10. Ma, Wen, Zhixiang Li, and Suchao Xie. "Crashworthiness analysis of thin-walled bio-inspired multi-cell corrugated tubes under quasi-static axial loading." Engineering Structures, Vol.204, 110069, Dec. 2019. DOI: https://doi.org/10.1016/j.engstruct.2019.110069
  11. Gray Wang, G., Dong, Z., and Aitchison, P., "Adaptive Response Surface Method - A Global Optimization Scheme for Approximation based Design Problems," Engineering Optimization Vol.33, No.6, pp.707-733, Aug. 2001. DOI: https://doi.org/10.1080/03052150108940940
  12. Zhang, Xiong, and Hoon Huh. "Energy absorption of longitudinally grooved square tubes under axial compression." Thin-Walled Structures, Vol.47, No.12, pp.1469-1477, Jul. 2009. DOI: https://doi.org/10.1016/j.tws.2009.07.003
  13. Pajot, Joseph. "Optimal design exploration using global response surface method: rail crush." Altair Engineering, 2013.