DOI QR코드

DOI QR Code

입도 분포 특성을 이용한 동해 남한국대지 시추 퇴적물 중 화산재와 황사의 구분

Discrimination of Volcanic Ash and Asian Dust (Hwangsa) in Core Sediments from the South Korea Plateau (East Sea) Using Characteristics of Grain-size Distributions

  • 이홍원 (충남대학교 자연과학대학 해양환경과학과) ;
  • 장준호 (충남대학교 자연과학대학 해양환경과학과) ;
  • 박장준 (충남대학교 자연과학대학 해양환경과학과)
  • LEE, HONG-WON (Department of Marine Environmental Science, Chungnam National University) ;
  • JANG, JUN-HO (Department of Marine Environmental Science, Chungnam National University) ;
  • BAHK, JANG-JUN (Department of Marine Environmental Science, Chungnam National University)
  • 투고 : 2021.03.10
  • 심사 : 2021.04.19
  • 발행 : 2021.05.31

초록

동해 남한국대지 IODP Site U1430 시추 퇴적물 쇄설성 성분의 입도 자료에 대한 구성 성분 분해 결과 황사 입자와 화산재 입자를 대표하는 4개 구성 입도 집단이 구별되었다. 이 중 화산재 입자를 대표하는 2개 구성 입도 집단은 다양한 형태의 세립 및 조립 유리질 샤드들로 이루어져 있으며, 전체 입도 분포에서 0-82% 범위의 비율을 차지하고 있다. 분석된 입도 자료 중 화산재 유입 영향을 받은 자료를 제거하고 황사 입경 변화의 경향을 추출하기 위한 기준으로 화산재 구성 입도 집단 비율 33%가 적정한 것으로 판단된다.

End-member (EM) analysis of grain-size distribution data for detrital fractions of IODP Site U1430 core sediments from the South Korea Plateau (East Sea) identified 4 EMs grain-size populations (EM) which represent either Asian dusts (Hwangsa) or volcanic ashes. The two EMs representing volcanic ashes consist of fine and coarse glass shards with various morphologies and constitute 0-82% of the total grain-size distributions. The 33% mixing percentage of volcanic ash EMs seems appropriate for a cut-off value for discrimination of grain-size data influenced by volcanic ash input from those dominated by Hwangsa.

키워드

과제정보

이 연구는 국제해저지각시추사업(International Ocean Discovery Program)의 시료와 자료를 활용하였습니다. 이 연구는 충남대학교 학술연구비에 의해 지원되었습니다.

참고문헌

  1. Anderson, C.H., R.W. Murray, A.G. Dunlea, L. Giosan, C.W. Kinsley, D. McGee and R. Tada, 2020. Aeolian delivery to Ulleung Basin, Korea (Japan Sea), during development of the East Asian Monsoon through the last 12 Ma. Geological Magazine, 157: 806-817. https://doi.org/10.1017/s001675681900013x
  2. Ashley, G.M., 1978. Interpretation of polymodal sediments. Journal of Geology, 86: 411-421. https://doi.org/10.1086/649710
  3. Bahk, J.J., I.K. Um and J.H. Jang, 2021. Lateral sediment transport and late Quaternary changes of eolian sedimentation in the East Sea (Japan Sea). Journal of Asian Earth Sciences, 208: 104672. https://doi.org/10.1016/j.jseaes.2021.104672
  4. Chun, J.H., D. Cheong, K. Ikehara and S.J. Han, 2007. Age of the SKP-I and SKP-II tephras from the southern East Sea/Japan Sea: Implications for interstadial events recorded in sediment from marine isotope stages 3 and 4. Palaeogeography Palaeoclimatology Palaeoecology, 247(1-2): 100-114. https://doi.org/10.1016/j.palaeo.2006.11.024
  5. Clark, M.W., 1976. Some methods for statistical analysis of multimodal distributions and their application to grain-size data. Journal of the International Association for Mathematical Geology, 8: 267-282. https://doi.org/10.1007/BF01029273
  6. Dietze, E., K. Hartman, B. Diekmann, J. Ijmker, F. Lehmkuhl, S. Opitz, , G. Stauch, B. Wunneman and A. Borchers, 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology., 243-244: 169-180. https://doi.org/10.1016/j.sedgeo.2011.09.014
  7. Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. Journal of Geology, 62: 344-359. https://doi.org/10.1086/626171
  8. Furuta, T., K. Fujioka and F. Arai, 1986. Widespread submarine tephras around Japan-petrographic and chemical properties. Marine Geology., 72: 125-142. https://doi.org/10.1016/0025-3227(86)90103-9
  9. Hamann, Y., W. Ehrmann, G. Schmiedl, S. Kruger, J.-B. Stuut and T. Kuhnt, 2008. Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments. Marine Geology., 248: 97-114. https://doi.org/10.1016/j.margeo.2007.10.009
  10. Ikehara, K., 2015. Marine tephra in the Japan Sea sediments as a tool for paleoceanography and paleoclimatology. Progress in Earth and Planetary Science, 2: 36. https://doi.org/10.1186/s40645-015-0068-z
  11. Jang, J.H., J.J. Bahk, E.J. Kim and I.K. Um, 2020. Characteristics and Paleoceanographic Implications of Grain-size Distributions of Biogenic Components in Sediments from the South Korea Plateau (East Sea). Ocean and Polar Research, 42: 249-261.
  12. Lee, S., I. Seo and K. Hyeong, 2019. Reconstruction of changes in eolian particle deposition across the mid-pleistocene transition in the central part of the North Pacific. Ocean and Polar Research, 41: 275-288.
  13. Lisiecki, L.E. and M.E.A. Raymo, 2005. Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003. https://doi.org/10.1029/2004PA001071
  14. Nagashima, K., R. Tada, A. Tani, Y. Sun, Y. Isozaki, S. Toyoda and H. Hasegawa, 2011. Millennial-scale oscillations of the westerly jet path during the last glacial period. Journal of Asian Earth Sciences, 40: 1214-1220. https://doi.org/10.1016/j.jseaes.2010.08.010
  15. Nagashima, K., R. Tada, H. Matsui, T. Irino, A. Tani and A. Toyoda, 2007. Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea. Palaeogeography Palaeoclimatology Palaeoecology, 247: 144-161. https://doi.org/10.1016/j.palaeo.2006.11.027
  16. Paterson, G.A. and D. Heslop, 2015. New methods for unmixing sediment grain size data. Geochemistry Geophysics Geosystems, 16: 4494-4506. https://doi.org/10.1002/2015GC006070
  17. Rea, D.K., 1994. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind. Reviews of Geophysics 32: 159-195, https://doi.org/10.1029/93RG03257.
  18. Sheridan, M.F., K.H. Wohletz and J. Dehn, 1987. Discrimination of grain-size subpopulations in pyroclastic deposits. Geology, 15: 367-370. https://doi.org/10.1130/0091-7613(1987)15<367:DOGSIP>2.0.CO;2
  19. Tada, R., T. Irino, K. Ikehara and the Expedition 346 Scientists, 2018. High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346. Progress in Earth and Planetary Sciences, 5: 19. https://doi.org/10.1186/s40645-018-0167-8
  20. Tada, R., R.W. Murray, C.A. Alvarez Zarikian, and the Expedition 346 Scientists, 2015. Proceedings of the International Ocean Discovery Program 346, College Station, TX.
  21. van Hateren, J.A., M.A. Prins, and R.T. van Balen, 2018. On the genetically meaningful decomposition of grain-size distributions: A comparison of different end-member modelling algorithms. Sedimentary Geology, 375: 49-71. https://doi.org/10.1016/j.sedgeo.2017.12.003
  22. Weltje, G.J., 1997, End-member modelling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. Journal of the International Association for Mathematical Geology, 29: 503-549. https://doi.org/10.1007/BF02775085
  23. Weltje, G.J. and M.A. Prins, 2007. Genetically meaningful decomposition of grain-size distributions. Sedimentary Geology, 202: 409-424. https://doi.org/10.1016/j.sedgeo.2007.03.007