과제정보
이 연구는 국제해저지각시추사업(International Ocean Discovery Program)의 시료와 자료를 활용하였습니다. 이 연구는 충남대학교 학술연구비에 의해 지원되었습니다.
참고문헌
- Anderson, C.H., R.W. Murray, A.G. Dunlea, L. Giosan, C.W. Kinsley, D. McGee and R. Tada, 2020. Aeolian delivery to Ulleung Basin, Korea (Japan Sea), during development of the East Asian Monsoon through the last 12 Ma. Geological Magazine, 157: 806-817. https://doi.org/10.1017/s001675681900013x
- Ashley, G.M., 1978. Interpretation of polymodal sediments. Journal of Geology, 86: 411-421. https://doi.org/10.1086/649710
- Bahk, J.J., I.K. Um and J.H. Jang, 2021. Lateral sediment transport and late Quaternary changes of eolian sedimentation in the East Sea (Japan Sea). Journal of Asian Earth Sciences, 208: 104672. https://doi.org/10.1016/j.jseaes.2021.104672
- Chun, J.H., D. Cheong, K. Ikehara and S.J. Han, 2007. Age of the SKP-I and SKP-II tephras from the southern East Sea/Japan Sea: Implications for interstadial events recorded in sediment from marine isotope stages 3 and 4. Palaeogeography Palaeoclimatology Palaeoecology, 247(1-2): 100-114. https://doi.org/10.1016/j.palaeo.2006.11.024
- Clark, M.W., 1976. Some methods for statistical analysis of multimodal distributions and their application to grain-size data. Journal of the International Association for Mathematical Geology, 8: 267-282. https://doi.org/10.1007/BF01029273
- Dietze, E., K. Hartman, B. Diekmann, J. Ijmker, F. Lehmkuhl, S. Opitz, , G. Stauch, B. Wunneman and A. Borchers, 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology., 243-244: 169-180. https://doi.org/10.1016/j.sedgeo.2011.09.014
- Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. Journal of Geology, 62: 344-359. https://doi.org/10.1086/626171
- Furuta, T., K. Fujioka and F. Arai, 1986. Widespread submarine tephras around Japan-petrographic and chemical properties. Marine Geology., 72: 125-142. https://doi.org/10.1016/0025-3227(86)90103-9
- Hamann, Y., W. Ehrmann, G. Schmiedl, S. Kruger, J.-B. Stuut and T. Kuhnt, 2008. Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments. Marine Geology., 248: 97-114. https://doi.org/10.1016/j.margeo.2007.10.009
- Ikehara, K., 2015. Marine tephra in the Japan Sea sediments as a tool for paleoceanography and paleoclimatology. Progress in Earth and Planetary Science, 2: 36. https://doi.org/10.1186/s40645-015-0068-z
- Jang, J.H., J.J. Bahk, E.J. Kim and I.K. Um, 2020. Characteristics and Paleoceanographic Implications of Grain-size Distributions of Biogenic Components in Sediments from the South Korea Plateau (East Sea). Ocean and Polar Research, 42: 249-261.
- Lee, S., I. Seo and K. Hyeong, 2019. Reconstruction of changes in eolian particle deposition across the mid-pleistocene transition in the central part of the North Pacific. Ocean and Polar Research, 41: 275-288.
- Lisiecki, L.E. and M.E.A. Raymo, 2005. Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003. https://doi.org/10.1029/2004PA001071
- Nagashima, K., R. Tada, A. Tani, Y. Sun, Y. Isozaki, S. Toyoda and H. Hasegawa, 2011. Millennial-scale oscillations of the westerly jet path during the last glacial period. Journal of Asian Earth Sciences, 40: 1214-1220. https://doi.org/10.1016/j.jseaes.2010.08.010
- Nagashima, K., R. Tada, H. Matsui, T. Irino, A. Tani and A. Toyoda, 2007. Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea. Palaeogeography Palaeoclimatology Palaeoecology, 247: 144-161. https://doi.org/10.1016/j.palaeo.2006.11.027
- Paterson, G.A. and D. Heslop, 2015. New methods for unmixing sediment grain size data. Geochemistry Geophysics Geosystems, 16: 4494-4506. https://doi.org/10.1002/2015GC006070
- Rea, D.K., 1994. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind. Reviews of Geophysics 32: 159-195, https://doi.org/10.1029/93RG03257.
- Sheridan, M.F., K.H. Wohletz and J. Dehn, 1987. Discrimination of grain-size subpopulations in pyroclastic deposits. Geology, 15: 367-370. https://doi.org/10.1130/0091-7613(1987)15<367:DOGSIP>2.0.CO;2
- Tada, R., T. Irino, K. Ikehara and the Expedition 346 Scientists, 2018. High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346. Progress in Earth and Planetary Sciences, 5: 19. https://doi.org/10.1186/s40645-018-0167-8
- Tada, R., R.W. Murray, C.A. Alvarez Zarikian, and the Expedition 346 Scientists, 2015. Proceedings of the International Ocean Discovery Program 346, College Station, TX.
- van Hateren, J.A., M.A. Prins, and R.T. van Balen, 2018. On the genetically meaningful decomposition of grain-size distributions: A comparison of different end-member modelling algorithms. Sedimentary Geology, 375: 49-71. https://doi.org/10.1016/j.sedgeo.2017.12.003
- Weltje, G.J., 1997, End-member modelling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. Journal of the International Association for Mathematical Geology, 29: 503-549. https://doi.org/10.1007/BF02775085
- Weltje, G.J. and M.A. Prins, 2007. Genetically meaningful decomposition of grain-size distributions. Sedimentary Geology, 202: 409-424. https://doi.org/10.1016/j.sedgeo.2007.03.007