DOI QR코드

DOI QR Code

Improved Surface Plasmon Resonance Sensing Sensitivity due to an Electrochemically Potential-Induced Gold Reconstruction

  • Choi, Baeck B. (Department of Chemical Engineering, University of Florida) ;
  • Kim, Bethy (Department of Chemistry, University of Florida) ;
  • Chen, Yiqi (Department of Chemical Engineering, University of Florida) ;
  • Jiang, Peng (Department of Chemical Engineering, University of Florida)
  • Received : 2020.12.23
  • Accepted : 2021.01.20
  • Published : 2021.05.28

Abstract

he progressively improved sensing sensitivity (∆λSPR/∆n, nm/RIU) to detect the refractive index is observed on the SPR platform of an Au-covered epoxy gratings in an increase in potential cycling in a typical three-electrode cell. Here, a DVD-R optical disc was used as a structure template to prepare an Au-covered epoxy gratings, and the newly formed reverse track pitch structure on the epoxy substrate was used as a working electrode directly in aqueous sulfuric acid solution. It is expected that Au reconstruction by potential cycling in sulfuric acid electrolyte increases the packing density of Au atoms in the grain boundary and improves the propagation of electromagnetic waves.

Keywords

Acknowledgement

This research was supported by the Korea Institute of Energy Technology Evaluation and Planning funded by the Korea government MOTIE (2019281010007A)

References

  1. J. Homola, Chem Rev. 2008, 108(2), 462-493. https://doi.org/10.1021/cr068107d
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nanosci Technol A Collect Rev from Nat Journals. 2009, 308-319.
  3. K. A. Willets, R. P. Van Duyne, Annu Rev Phys Chem. 2007, 58, 267-297. https://doi.org/10.1146/annurev.physchem.58.032806.104607
  4. H. C. Jeon, C. J. Heo, S. Y. Lee, S. G. Park, S. M. Yang, J Mater Chem. 2012, 22(11), 4603-4606. https://doi.org/10.1039/c2jm15723c
  5. S. Y. Lee, H. C. Jeon, S. M. Yang, J Mater Chem. 2012, 22(13), 5900-5913. https://doi.org/10.1039/c2jm16568f
  6. X. Dou, P. Y. Chung, P. Jiang, J. Dai, Appl Phys Lett. 2012, 100(4), 041116-041119. https://doi.org/10.1063/1.3679682
  7. J. Yu, H. Tao, B. Cheng, ChemPhysChem. 2010, 11(8), 1617-1618. https://doi.org/10.1002/cphc.200900993
  8. E. M. Larsson, C. Langhammer, I. Zoric, B. Kasemo, Science (80- ). 2009, 326(5956), 1091-1094. https://doi.org/10.1126/science.1176593
  9. B. Choi, X. Dou, Y. Fang, B. M. Phillips, P. Jiang, Phys Chem Chem Phys. 2016, 18(37), 26078-26087. https://doi.org/10.1039/c6cp04977j
  10. T. Kondo, J. Morita, K. Hanaoka, S. Takakusagi, K. Tamura, M. Takahasi, J. N. I. Mizuki, K. Uosaki, J Phys Chem C. 2007, 111(35), 13197-13204.
  11. O. A. Hazzazi, G. A. Attard, P. B. Wells, F. J. Vidal-Iglesias, M. Casadesus, J Electroanal Chem. 2009, 625(2), 123-130. https://doi.org/10.1016/j.jelechem.2008.10.016
  12. J. Wang, A. J. Davenport, H. S. Isaacs, B. M. Ocko, Science (80- ). 1991, 255(5050), 1416-1418. https://doi.org/10.1126/science.255.5050.1416
  13. J. Wang, B. M. Ocko, A. J. Davenport, H. S. Issacs, Phys Rev B. 1992, 46(16), 10321-10338. https://doi.org/10.1103/physrevb.46.10321
  14. T. Kondo, J. Zegenhagen, S. Takakusagi, K. Uosaki, Surf Sci. 2015, 631, 96-104. https://doi.org/10.1016/j.susc.2014.06.013
  15. B. Choi, Surface Plasmon Resonance Based on Optical Discs and Silica Microsphere Monolayer, University Of Florida 2015.
  16. J. Schneider, D. M. Kolb, Surf Sci. 1988, 193(3), 579-592. https://doi.org/10.1016/0039-6028(88)90455-4
  17. D. M. Kolb, J. Schneider, Surf Sci. 1985, 162(1-3), 764-775. https://doi.org/10.1016/0039-6028(85)90977-X
  18. R. R. Abbas, T. H. Richardson, A. Hobson, A. Hassan, T. R. Abbas, Colloids Surfaces A Physicochem Eng Asp. 2014, 444, 95-103. https://doi.org/10.1016/j.colsurfa.2013.12.036
  19. C. Yan, Y. Chen, A. Jin, M. Wang, X. Kong, X. Zhang, Y. Ju, L. Han, Appl Surf Sci. 2011, 258(1), 377-381. https://doi.org/10.1016/j.apsusc.2011.09.037
  20. V. Svorcik, O. Kvitek, O. Lyutakov, J. Siegel, Z. Kolska, Appl Phys A Mater Sci Process. 2011, 102(3), 747-751. https://doi.org/10.1007/s00339-010-5977-5
  21. M. Shao, A. Peles, K. Shoemaker, Nano Lett. 2011, 11(9), 3714-3719. https://doi.org/10.1021/nl2017459
  22. K. J. J. Mayrhofer, B. B. Blizanac, M. Arenz, V. R. Stamenkovic, P. N. Ross, N. M. Markovic, J Phys Chem B. 2005, 109(30), 14433-14440. https://doi.org/10.1021/jp051735z
  23. B. E. Hayden, D. Pletcher, J. P. Suchsland, L. J. Williams, Phys Chem Chem Phys. 2009, 11(40), 9141-9148. https://doi.org/10.1039/b910110a
  24. Y. Xia, N. J. Halas, MRS Bull. 2005, 30, 338-348. https://doi.org/10.1557/mrs2005.96
  25. C. Noguez, J Phys Chem C. 2007, 111(10), 3606-3619. https://doi.org/10.1021/jp066539m
  26. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, et al., Nat Commun. 2013, 4, 1-9.
  27. Y. Gao, Q. Gan, F. J. Bartoli, IEEE J Sel Top Quantum Electron. 2014, 20(3).
  28. Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, Z. Y. Li, Nano Lett. 2005, 5(7), 1237-1242. https://doi.org/10.1021/nl0508826
  29. J. Henzie, M. H. Lee, T. W. Odom, Nat Nanotechnol. 2007, 2(9), 549-554. https://doi.org/10.1038/nnano.2007.252
  30. K. M. Mayer, J. H. Hafner, Chem Rev. 2011, 111(6), 3828-3857. https://doi.org/10.1021/cr100313v