Acknowledgement
This work was supported by Korea institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through (Agri-Bioindustry Technology Development Program), funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No. 317006-04-2-HD030).
References
- Akinyemi, I. A., Wang, F., Zhou, B., Qi, S. and Wu, Q. 2016. Ecogenomic survey of plant viruses infecting Tobacco by next generation sequencing. Virol. J. 13:181. https://doi.org/10.1186/s12985-016-0639-7
- Al Rwahnih, M., Daubert, S., Golino, D., Islas, C. and Rowhani, A. 2015. Comparison of next-generation sequencing versus biological indexing for the optimal detection of viral pathogens in grapevine. Phytopathology 105:758-763. https://doi.org/10.1094/PHYTO-06-14-0165-R
- Bae, Y. 2015. Development of multiplex RT-PCR for apple viruses and viroid and the incidence of apple viral disease in Gyeongsangbuk-do. M.S. thesis. Kyungpook National University, Daegu, Korea
- Bao, Y., Chetvernin, V. and Tatusova, T. 2012. Pairwise sequence comparison (PASC) and its application in the classification of filoviruses. Viruses 4:1318-1327. https://doi.org/10.3390/v4081318
- Cho, I. S., Kim, D. H., Kim, H. R., Chung, B. N., Cho, J. D. and Choi, G. S. 2010. Occurrence of pome fruit viruses on pear trees (Pyrus pyrifolia) in Korea. Res. Plant Dis. 16:326-330 (in Korean). https://doi.org/10.5423/RPD.2010.16.3.326
- Choi, S. K., Choi, J. K., Park, W. M. and Ryu, K. H. 1999. RTPCR detection and identification of three species of cucumoviruses with a genus-specific single pair of primers. J. Virol. Methods 83:67-73. https://doi.org/10.1016/S0166-0934(99)00106-8
- Donaire, L., Wang, Y., Gonzalez-Ibeas, D., Mayer, K. F., Aranda, M. A. and Llave, C. 2009. Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203-214. https://doi.org/10.1016/j.virol.2009.07.005
- Elzebroek, A. T. G. and Wind, K. 2008. Guide to cultivated plants. CAB International, Oxfordshire, UK. 540 pp.
- Jeong, J.-J., Ju, H.-J. and Noh, J. 2014. A review of detection of methods for the plant viruses. Res. Plant Dis. 20:173-181. https://doi.org/10.5423/RPD.2014.20.3.173
- Ji, Z., Zhao, X., Duan, H., Hu, T., Wang, S., Wang, Y. and Cao, K. 2013. Multiplex RT-PCR detection and distribution of four apple viruses in China. Acta Virol. 57:435-441. https://doi.org/10.4149/av_2013_04_435
- Jo, Y., Bae, J.-Y., Kim, S.-M., Choi, H., Lee, B. C. and Cho, W. K. 2018a. Barley RNA viromes in six different geographical regions in Korea. Sci. Rep. 8:13237. https://doi.org/10.1038/s41598-018-31671-4
- Jo, Y., Choi, H., Kim, S.-M., Kim, S.-L., Lee, B. C. and Cho, W. K. 2017. The pepper virome: natural co-infection of diverse viruses and their quasispecies. BMC Genomics 18:453. https://doi.org/10.1186/s12864-017-3838-8
- Jo, Y., Choi, H., Lian, S., Cho, J. K., Chu, H. and Cho, W. K. 2020. Identification of viruses infecting six plum cultivars in Korea by RNA-sequencing. PeerJ 8:e9588. https://doi.org/10.7717/peerj.9588
- Jo, Y., Lian, S., Chu, H., Cho, J. K., Yoo, S.-H., Choi, H., Yoon, J.-Y., Choi, S.-K., Lee, B. C. and Cho, W. K. 2018b. Peach RNA viromes in six different peach cultivars. Sci. Rep. 8:1844. https://doi.org/10.1038/s41598-018-20256-w
- Katwal, V. S., Handa, A., Thakur, P. D. and Tomar, M. 2016. Prevalence and serological detection of apple viruses in Himachal Pradesh. Plant Pathol. J. (Faisalabad) 15:40-48. https://doi.org/10.3923/ppj.2016.40.48
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. and Drummond, A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649. https://doi.org/10.1093/bioinformatics/bts199
- Kim, N.-Y., Oh, J., Lee, S.-H., Kim, H., Moon, J. S. and Jeong, R.-D. 2018. Rapid and specific detection of apple stem grooving virus by reverse transcription-recombinase polymerase amplification. Plant Pathol. J. 34:575-579. https://doi.org/10.5423/PPJ.NT.06.2018.0108
- Lu, Y., Yao, B., Wang, G. and Hong, N. 2018. The detection of ACLSV and ASPV in pear plants by RT-LAMP assays. J. Virol. Methods 252:80-85. https://doi.org/10.1016/j.jviromet.2017.11.010
- Mahfoudhi, N., El Air, M., Moujahed, R., Salleh, W. and Djelouah, K. 2013. Occurrence and distribution of pome fruit viruses in Tunisia. Phytopathol. Mediterr. 52:136-140.
- Ma, X., Hong, N., Moffett, P. and Wang, G. 2016. Genetic diversity and evolution of Apple stem pitting virus isolates from pear in China. Can. J. Plant Pathol. 38:218-230. https://doi.org/10.1080/07060661.2016.1158741
- Menzel, W., Jelkmann, W. and Maiss, E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods 99:81-92. https://doi.org/10.1016/S0166-0934(01)00381-0
- Nam, K. W. and Kim, C. H. 1994. Studies on the pear abnormal leaf spot disease. 1. Occurrence and damage. Korean J. Plant Pathol. 10:169-174 (in Korean).
- Roossinck, M. J., Martin, D. P. and Roumagnac, P. 2015. Plant virus metagenomics: advances in virus discovery. Phytopathology 105:716-727. https://doi.org/10.1094/PHYTO-12-14-0356-RVW
- Saito, T. 2016. Advances in Japanese pear breeding in Japan. Breed. Sci. 66:46-59. https://doi.org/10.1270/jsbbs.66.46
- Schneider, W. L. and Roossinck, M. J. 2001. Genetic diversity in RNA virus quasispecies is controlled by host-virus interactions. J. Virol. 75:6566-6571. https://doi.org/10.1128/JVI.75.14.6566-6571.2001
- Schlotterer, C., Kofler, R., Versace, E., Tobler, R. and Franssen, S. U. 2015. Combining experimental evolution with nextgeneration sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity (Edinb) 114:431-440. https://doi.org/10.1038/hdy.2014.86
- Shim, H.-K., Hwang, K.-H., Shim, C.-K., Son, S.-W., Kim, D., Choi, Y.-M., Chung, Y., Kim, D.-H., Jee, H.-J. and Lee, S.-C. 2006. The pear black necrotic leaf spot disease virus transmitted by Talaromyces flavus display pathogenicity similar to Apple stem grooving virus strains. Plant Pathol. J. 22:255-259. https://doi.org/10.5423/PPJ.2006.22.3.255
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
- Wylie, S. J., Li, H., Saqib, M. and Jones, M. G. 2014. The global trade in fresh produce and the vagility of plant viruses: a case study in garlic. PLoS ONE 9:e105044. https://doi.org/10.1371/journal.pone.0105044
- Wu, Q., Ding, S.-W., Zhang, Y. and Zhu, S. 2015. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. Annu. Rev. Phytopathol. 53:425-444. https://doi.org/10.1146/annurev-phyto-080614-120030
- Xu, Y., Li, S., Na, C., Yang, L. and Lu, M. 2019. Analyses of virus/viroid communities in nectarine trees by next-generation sequencing and insight into viral synergisms implication in host disease symptoms. Sci. Rep. 9:12261. https://doi.org/10.1038/s41598-019-48714-z
- Yoon, J. Y., Joa, J. H., Choi, K. S., Do, K. S., Lim, H. C. and Chung, B. N. 2014. Genetic diversity of a natural population of apple stem pitting virus isolated from apple in Korea. Plant Pathol. J. 30:195-199. https://doi.org/10.5423/PPJ.NT.02.2014.0015