DOI QR코드

DOI QR Code

Eighteen unreported radiation-resistant bacterial species isolated from Korea in 2018

  • Maeng, Soohyun (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Park, Yuna (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Oh, Hyejin (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Damdintogtokh, Tuvshinzaya (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Bang, Minji (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Lee, Byoung-Hee (Environmental Research Complex, National Institute of Biological Resources) ;
  • Lee, Ki-eun (Environmental Research Complex, National Institute of Biological Resources) ;
  • Kim, Myung Kyum (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University)
  • Received : 2019.07.02
  • Accepted : 2021.04.14
  • Published : 2021.05.31

Abstract

In 2018, as a subset study to discover indigenous prokaryotic species in Korea, a total of 18 unreported bacterial strains were discovered. From the high 16S rRNA gene sequence similarity (>98.8%) and formation of a robust phylogenetic clade, it was determined that each strain belonged an independent and predefined bacterial species. There were no official report that these 18 species were previously described in Korea; therefore, one strain of Williamsia, one strain of Rhodococcus, three strains of Microbacterium, three strains of Agromyces, one strain of Arthrobacter, one strain of Paeniglutamicibacter, one strain of Pseudarthrobacter, one strain of Nocardioides, one strain of Fibrella, one strain of Hymenobacter, one strain of Deinococcus, two strains of Fictibacillus, and one strain of Paenibacillus are described as unreported bacterial species in Korea. Gram reaction, basic biochemical characteristics, and colony and cell morphologies are described in the species description section.

Keywords

Acknowledgement

This work was supported by a research grant from Seoul Women's University (2018) and by a grant from the National Institute of Biological Resources(NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR201801106).

References

  1. Battista, J.R. 2016. Deinococcus-ThermusGroup. eLS, 1-12.
  2. Choi, C.Y., J.Y. Choi, Y.J. Choi and J.H. Yoo. 2018. Physiological effects of various light spectra on oxidative stress by starvation in olive flounder, Paralichthys olivaceus. Mol Cell Toxicol 14:399-408. https://doi.org/10.1007/s13273-018-0044-y
  3. Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797. https://doi.org/10.1093/nar/gkh340
  4. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  5. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. vol 41. [London]: Information Retrieval Ltd., c1979-c2000, pp 95-98.
  6. Hirsch, P., W. Ludwig, C. Hethke, M. Sittig, B. Hoffmann and C.A. Gallikowski. 1998. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst. Appl. Microbiol. 21:374-383. https://doi.org/10.1016/S0723-2020(98)80047-7
  7. Im, S., D. Song, M. Joe, D. Kim, D.-H. Park and S. Lim. 2013. Comparative survival analysis of 12 histidine kinase mutants of Deinococcus radiodurans after exposure to DNA-damaging agents. Bioprocess Biosyst Eng 36:781-789. https://doi.org/10.1007/s00449-013-0904-8
  8. Jang, S.A., S.R. Lee, H.J. Koo, J.W. Lee, Y. Park, S. Namkoong, M.K. Kim, S.C. Kang and E.H. Sohn. 2017. Gamma irradiation-induced liver injury and its amelioration by red ginseng extract. Mol Cell Toxicol 13:461-469. https://doi.org/10.1007/s13273-017-0050-5
  9. Kim, M.K., M.S. Kang, S. Srinivasan, D.H. Lee, S.-Y. Lee, H.-Y. Jung. 2017a. Complete genome sequence of Hymenobacter sedentarius DG5BT, a bacterium resistant to gamma radiation. Mol Cell Toxicol 13:199-205. https://doi.org/10.1007/s13273-017-0021-x
  10. Kim, M.K., J.Y. Kim, S.J. Kim, M.J. Kim, J.Y. Lee, C.G. Kim and S. Srinivasan. 2017b. Complete genome sequence of Spirosoma pulveris JSH 5-14T, a bacterium isolated from a dust sample. Mol Cell Toxicol 13:373-378. https://doi.org/10.1007/s13273-017-0041-6
  11. Kim, O.S., Y.J. Cho, K. Lee, S.H. Yoon, M. Kim, H. Na, S.C. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won and J. Chun. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology 62:716-721. https://doi.org/10.1099/ijs.0.038075-0
  12. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press.
  13. Kumar, S., G. Stecher and K. Tamura. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datadets. Molecular Biology and Evolution 33:1870-1874. https://doi.org/10.1093/molbev/msw054
  14. Lee, J.J., S.J. Park, Y.H. Lee, S.Y. Lee, L.N. Ten and H.Y. Jung. 2017. Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. International Journal of Systematic and Evolutionary Microbiology 67:1206-1211. https://doi.org/10.1099/ijsem.0.001788
  15. Lee, J.J., S. Srinivasan, S. Lim, M. Joe, S.H. Lee, S.A. Kwon, Y.J. Kwon, J. Lee, J.J. Choi, H.M. Lee, Y.K. Auh and M.K. Kim. 2014. Hymenobacter swuensis sp. nov., a gamma-radiation-resistant bacteria isolated from mountain soil. Current Microbiology 68:305-310. https://doi.org/10.1007/s00284-013-0478-3
  16. Miao, V. and J. Davies. 2010. Actinobacteria: the good, the bad, and the ugly. Antonie Van Leeuwenhoek 98:143-150. https://doi.org/10.1007/s10482-010-9440-6
  17. Saitou, N., M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425.
  18. Sathiyaraj, G., M.K. Kim, J.Y. Kim, S.J. Kim, J.H. Jang, S. Maeng, M.S. Kang and S. Srinivasan. 2018a. Complete genome sequence of Microvirga sp. 17 mud 1-3, a radiation-resistant bacterium. Mol Cell Toxicol 14:347-350. https://doi.org/10.1007/s13273-018-0038-9
  19. Sathiyaraj, G., M.K. Kim, J.Y. Kim, S.J. Kim, J.H. Jang, S. Maeng, M.S. Kang and S. Srinivasan. 2018b. Complete genome sequence of Nibribacter radioresistens DG15C, a radiation resistant bacterium. Mol Cell Toxicol 14:323-328. https://doi.org/10.1007/s13273-018-0035-z
  20. Selvam, K., J.R. Duncan, M. Tanaka and J.R. Battista. 2013. DdrA, DdrD, and PprA: components of UV and mitomycin C resistance in Deinococcus radiodurans R1. PLoS One 8(7):e69007. https://doi.org/10.1371/journal.pone.0069007
  21. Seong, C.N., J.W. Kang, J.H. Lee, S.Y. Seo, J.J. Woo, C. Park, K.S. Bae and M.S. Kim. 2018. Taxonomic hierarchy of the phylum Firmicutes and novel Firmicutes species originated from various environments in Korea. Journal of Microbiology 56(1):1-10. https://doi.org/10.1007/s12275-018-7318-x
  22. Srinivasan, S., J.J. Lee, K.R. Park, S.H. Park, H.Y. Jung and M.K. Kim. 2015. Hymenobacter terrae sp. nov., a bacterium isolated from soil. Current Microbiology 70:643-650. https://doi.org/10.1007/s00284-014-0760-z
  23. Srinivasan, S., S.Y. Lee, M.K. Kim and H.Y. Jung. 2017. Complete genome sequence of Hymenobacter sp. DG25 A, a gamma radiation-resistant bacterium isolated from soil. Mol Cell Toxicol 13:65-72. https://doi.org/10.1007/s13273-017-0007-8
  24. Su, S., M. Chen, C. Teng, S. Jiang, C. Zhang, M. Lin and W. Zhang. 2014. Hymenobacter kanuolensis sp. nov., a novel radiationresistant bacterium. International Journal of Systematic and Evolutionary Microbiology 64:2108-2112. https://doi.org/10.1099/ijs.0.051680-0
  25. Weisburg, W.G., S.J. Giovannoni and C.R. Woese. 1989. The Deinococcus-Thermus Phylum and the Effect of rRNA Composition on Phylogenetic Tree Construction. Systematic and Applied Microbiology 11(2):128-134. https://doi.org/10.1016/S0723-2020(89)80051-7
  26. Weisburg, W.G., S.M. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  27. Wragg, P., L. Randall and A.M. Whatmore. 2014. Comparison of Biolog GEN III MicroStation semi-automated bacterial identification system with matrix-assisted laser desorption ionization-time of flightmass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest. Journal of Microbiological Methods 105:16-21. https://doi.org/10.1016/j.mimet.2014.07.003
  28. Zhang, Q., C. Liu, Y. Tang, G. Zhou, P. Shen, C. Fang and A. Yokota. 2007. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. International Journal of Systematic and Evolutionary Microbiology 57:1752-1756. https://doi.org/10.1099/ijs.0.65033-0