COMMON FIXED POINTS OF w-COMPATIBLE MAPS IN MODULAR A-METRIC SPACES

Elif Kaplan ${ }^{\text {a,* }}$ and Servet Kutukcu ${ }^{\text {b }}$

Abstract

The aim of this paper is to prove a common fixed point theorem for two w-compatible maps in modular A-metric spaces. The main result is also illustrated by an example to demonstrate the degree of validity of our hypothesis.

1. Introduction

Modular metric spaces are a natural generalization of metric spaces. The introduction of this new concept was given by V.V. Chistyakov [2], [3]. In the last decade, there has been an enormous progress in modular metric.

In 2017, Aydin and Kutukcu [1] introduced a new structure of generalized metric space and called it modular A-metric space.

Now, we give some definitions and results which are used in this paper.
Definition 1.1 ([1]). The modular A-metric on X where X is non-empty is defined by a mapping $A_{\lambda}:(0, \infty) \times X^{n} \rightarrow[0, \infty]$ that satisfying following conditions for all $x_{i}, a \in X$ and $\lambda, \lambda_{i}>0$ for $i=\overline{1, n}$:
(A1) $A_{\lambda}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n}\right) \geq 0$,
(A2) $\quad A_{\lambda}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n}\right)=0$ if and only if $x_{1}=x_{2}=\ldots=x_{n-1}=x_{n}$

$$
\begin{align*}
&\left.A_{\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n}\right)\right) \leq A_{\lambda_{1}}\left(x_{1}, x_{1}, \ldots,\left(x_{1}\right)_{n-1}, a\right) \tag{A3}\\
&+A_{\lambda_{2}}\left(x_{2}, x_{2}, \ldots,\left(x_{2}\right)_{n-1}, a\right) \\
& \vdots \\
&+A_{\lambda_{n}}\left(x_{n}, x_{n}, \ldots,\left(x_{n}\right)_{n-1}, a\right)
\end{align*}
$$

The pair (X, A) is said to be a modular A-metric space.

[^0]Lemma 1.2 ([1]). Let (X, A) be a modular A-metric space. If for each $x_{1}, \ldots, x_{n} \in$ X, the mapping $A\left(\cdot, x_{1}, x_{2}, \ldots, x_{n}\right):(0, \infty) \rightarrow[0, \infty]$ is continuous, then the following equality is true

$$
A_{\lambda}(x, x, \ldots, x, y)=A_{\lambda}(y, y, \ldots, y, x)
$$

for each $x, y \in X$ and $\lambda>0$.
Theorem 1.3 ([1]). Let (X, A) be a modular A-metric space and the mapping $A\left(\cdot, x_{1}, x_{2}, \ldots, x_{n}\right):(0, \infty) \rightarrow[0, \infty]$ is continuous for each $x_{1}, x_{2}, \ldots, x_{n} \in X$. Then, there are the following inequalities such that

$$
A_{\lambda}(x, x, x, \ldots, x, z) \leq(n-1) A_{\frac{\lambda}{n}}(x, x, x, \ldots, x, y)+A_{\frac{\lambda}{n}}(z, z, z, \ldots, z, y)
$$

and

$$
A_{\lambda}(x, x, x, \ldots, x, z) \leq(n-1) A_{\frac{\lambda}{n}}(x, x, x, \ldots, x, y)+A_{\frac{\lambda}{n}}(y, y, y, \ldots, y, z)
$$

for each $x, y, z \in X$.
Proposition 1.4 ([1]). Let (X, A) be a modular A-metric space and the mapping $A\left(\cdot, x_{1}, x_{2}, \ldots, x_{n}\right):(0, \infty) \rightarrow[0, \infty]$ is continuous for each $x_{1}, x_{2}, \ldots, x_{n} \in X$. Then, the following inequality

$$
A_{\lambda}(x, x, \ldots, x, y) \leq A_{\frac{\lambda}{n}}(x, x, \ldots, x, y) \leq A_{\frac{\lambda}{n^{2}}}(x, x, \ldots, x, y)
$$

is satisfied for $\frac{\lambda}{n^{2}} \leq \frac{\lambda}{n} \leq \lambda$.
Proof. If it is taken $a=x$ in the condition (A3) and used the inequality in Theorem (1.3), the following inequality is written:

$$
\begin{aligned}
A_{\lambda}(x, x, \ldots, x, y) & \leq(n-1) A_{\frac{\lambda}{n}}(x, x, \ldots, x, x)+A_{\frac{\lambda}{n}}(y, y, \ldots y, x) \\
& =A_{\frac{\lambda}{n}}(y, y, \ldots y, x) \\
& \leq(n-1) A_{\frac{\lambda}{n^{2}}}(y, y, \ldots y, y)+A_{\frac{\lambda}{n^{2}}}(x, x, \ldots, x, y) \\
& =A_{\frac{\lambda}{n^{2}}}(x, x, \ldots, x, y)
\end{aligned}
$$

Thus,

$$
A_{\lambda}(x, x, \ldots, x, y) \leq A_{\frac{\lambda}{n}}(x, x, \ldots, x, y) \leq A_{\frac{\lambda}{n^{2}}}(x, x, \ldots, x, y)
$$

is obtained with Lemma (1.2).

Example 1.5 ([1]). Let $X=\mathbf{R}$. Define a function $A_{\lambda}:(0, \infty) \times X^{n} \rightarrow[0, \infty]$ by

$$
\begin{aligned}
& A_{\lambda}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n}\right) \\
& =\frac{\lambda}{n}\left|x_{1}-x_{2}\right|+\left|x_{1}-x_{3}\right|+\ldots+\left|x_{1}-x_{n}\right| \\
& \quad+\left|x_{2}-x_{3}\right|+\left|x_{2}-x_{4}\right|+\ldots+\left|x_{2}-x_{n}\right| \\
& \quad \vdots \\
& \quad+\left|x_{n-2}-x_{n-1}\right|+\left|x_{n-2}-x_{n}\right| \\
& \quad+\left|x_{n-1}-x_{n}\right| \\
& =\frac{\lambda}{n} \sum_{i=1}^{n} \sum_{i<j}\left|x_{i}-x_{j}\right|
\end{aligned}
$$

for all $\lambda>0$ and $x_{1}, x_{2}, \ldots, x_{n} \in X$.
Then, (X, A) is a usual modular A-metric space on X.
Definition 1.6 ([1]). Let (X, A) be a modular A-metric space and let $x_{0} \in X$. Then, for any $r>0$, the set

$$
B_{A_{\lambda}}\left(x_{0}, r\right)=\left\{y \in X: A_{\lambda}\left(y, y, y, \ldots, y, x_{0}\right)<r\right\}
$$

is defined as an open ball with center x_{0} and radius r.
Definition 1.7 ([1]). Let (X, A) be a modular A-metric space and $Y \subset X$.
(1) If there exists a $r>0$ such that $B_{A_{\lambda}}(x, r) \subset Y$ for each $x \in Y$ and $\lambda>0$, then Y is called be an open set.
(2) Let
$\tau_{A}:=\left\{Y \subset X: x \in Y\right.$ iff there exists a $r>0$ such that $\left.B_{A_{\lambda}}(x, r) \subset Y\right\}$.
In this case, $\left(X, \tau_{A}\right)$ is a topological space.
Theorem 1.8 ([1]). Let A be a modular A-metric on X. In this case, (X, τ) is a Hausdorff space.

Definition 1.9 ([1]). Let A be a modular A-metric on $X,\left\{x_{k}\right\}_{k \in I N} \subset X$ and $x \in X$.
(1) $\left\{x_{k}\right\}$ converges to x if $A_{\lambda}\left(x_{k}, x_{k}, x_{k}, \ldots, x_{k}, x\right) \rightarrow 0$ as $k \rightarrow \infty$ for all $\lambda>0$. In other words, for each $\varepsilon>0$, there exists a natural number $k_{0}(\varepsilon) \in I N$ such that for all $k \geq k_{0}, A_{\lambda}\left(x_{k}, x_{k}, x_{k}, \ldots, x_{k}, x\right) \leq \varepsilon$.
(2) $\left\{x_{k}\right\}$ is said to be a Cauchy sequence if $A_{\lambda}\left(x_{k}, x_{k}, x_{k}, \ldots, x_{k}, x_{m}\right) \rightarrow 0$ as $k, m \rightarrow \infty$ for all $\lambda>0$. In other words, for each $\varepsilon>0$, there exists a natural number $k_{0}(\varepsilon) \in I N$ such that for all $k, m \geq k_{0}$,

$$
A_{\lambda}\left(x_{k}, x_{k}, x_{k}, \ldots, x_{k}, x_{m}\right) \leq \varepsilon
$$

(3) (X, A) is said to be complete modular A-metric space if every Cauchy sequence in X is convergent.

Theorem 1.10 ([1]). Let A be a modular A-metric on X. If the sequence $\left\{x_{k}\right\}_{k \in I N} \in$ X converges to x in X, in this case x is unique.

Theorem 1.11 ([1]). Let A be a modular A-metric on X. If $\left\{x_{k}\right\}_{k \in I N} \subset X$ is a convergent sequence in X, then $\left\{x_{k}\right\}_{k \in I N}$ is a Cauchy sequence.

2. w-Compatible Maps in Modular A-Metric Spaces

In 1986, Jungck [4] introduced the concept of compatible maps in metric spaces as follows:

Definition 2.1. Let (M, d) be a metric space and $f, g: M \rightarrow M$. The mappings f and g are said to be compatible if $\lim _{k \rightarrow \infty} d\left(f g x_{k}, g f x_{k}\right)=0$, whenever $\left\{x_{k}\right\}$ is a sequence in M such that $\lim _{k \rightarrow \infty} f x_{k}=\lim _{k \rightarrow \infty} g x_{k}=z$ for some $z \in M$.

In modular A-metric spaces, the notion of w-compatible maps is given as follows:
Definition 2.2 ([5]). Let M and N be two self maps on a modular A-metric space (X, A). If

$$
\lim _{k \rightarrow \infty} A_{\lambda}\left(M N x_{k}, \ldots, M N x_{k}, N M x_{k}\right)=0
$$

where $\left\{x_{k}\right\}$ is a sequence in X which satisfies $\lim _{k \rightarrow \infty} M x_{k}=\lim _{k \rightarrow \infty} N x_{k}=t$ for some point $t \in X$ and $\lambda>0$, the maps M and N are said to be w-compatible.

Example 2.3. Let $X=\mathbf{R}$ and A be a function on X defined by

$$
A_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\lambda}{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n}\left|x_{i}-x_{j}\right|
$$

for all $\lambda>0$ and $x_{1}, x_{2}, \ldots, x_{n} \in X$. Then, (X, A) is a modular A-metric space. Let M and N be two self maps defined on X by $M(x)=x^{2}$ and $N(x)=x^{3}$ for each $x \in \mathbf{R}$. Take $\left\{x_{k}\right\}$ such that $\left\{x_{k}\right\}=\frac{1}{k}, k=1,2, \ldots$. In this case, the maps M and N are w-compatible maps.

Theorem 2.4. Let (X, A) be a complete modular A-metric space. Let T and S be maps from X into itself such that
(1) $T(X) \subset S(X)$
(2) T or S is continuous
(3) $A_{\lambda}\left(T x_{1}, T x_{2}, \ldots, T x_{k}\right) \leq q A_{\lambda}\left(S x_{1}, S x_{2}, \ldots, S x_{k}\right)$ for each $x_{1}, x_{2}, \ldots, x_{k} \in X$ and $0 \leq q<1$
(4) T and S are w-compatible maps.

Then, T and S have a unique common fixed point in X.
Proof. Let x_{0} be an arbitrary point in X. We can choose a point x_{1} in X such that $T x_{0}=S x_{1}$ with $T(X) \subset S(X)$. By generalizing this situation, we can construct a sequence $\left\{x_{k+1}\right\}$ in X as follows:

$$
y_{k}=T x_{k}=S x_{k+1}, k=0,1,2, \ldots
$$

From (3), we have

$$
\begin{aligned}
& A_{\lambda}\left(T x_{k}, T x_{k}, \ldots, T x_{k}, T x_{k+1}\right) \\
& \leq q A_{\lambda}\left(S x_{k}, S x_{k}, \ldots, S x_{k}, S x_{k+1}\right) \\
& =q A_{\lambda}\left(T x_{k-1}, T x_{k-1}, \ldots, T x_{k-1}, T x_{k}\right) \\
& \leq q^{2} A_{\lambda}\left(S x_{k-1}, S x_{k-1}, \ldots, S x_{k-1}, S x_{k}\right) \\
& =q^{2} A_{\lambda}\left(T x_{k-2}, T x_{k-2}, \ldots, T x_{k-2}, T x_{k-1}\right) \\
& \quad \vdots \\
& \leq q^{k} A_{\lambda}\left(S x_{1}, S x_{1}, \ldots, S x_{1}, S x_{2}\right) \\
& =q^{k} A_{\lambda}\left(T x_{0}, T x_{0}, \ldots, T x_{0}, T x_{1}\right)
\end{aligned}
$$

Letting as $k \rightarrow \infty$, we obtain

$$
\lim _{k \rightarrow \infty} A_{\lambda}\left(T x_{k}, T x_{k}, \ldots, T x_{k+1}\right) \leq \lim _{k \rightarrow \infty} q^{k} A_{\lambda}\left(T x_{0}, T x_{0}, \ldots, T x_{1}\right)=0
$$

For all $k, m \in I N$ and $k<m$, we have by rectangle inequality that

$$
\begin{aligned}
& A_{\lambda}\left(T x_{k}, T x_{k}, \ldots, T x_{m}\right) \\
& \leq(n-1) \sum_{i=k}^{m-2} A_{\frac{\lambda}{n^{n-2}}}\left(T x_{i}, \ldots, T x_{i+1}\right)+A_{\frac{\lambda}{n^{n-2}}}\left(T x_{m-1}, \ldots, T x_{m}\right) \\
& \leq(n-1) \sum_{i=k}^{m-2} q^{i} A_{\frac{\lambda}{n^{n-2}}}\left(T x_{0}, \ldots, T x_{1}\right)+q^{m-1} A_{\frac{\lambda}{n^{n-2}}}\left(T x_{0}, \ldots, T x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq(n-1)\left[q^{k}+q^{k+1}+\ldots+q^{m-2}+q^{m-1}\right] A_{\frac{\lambda}{n^{n-2}}}\left(T x_{0}, T x_{0}, \ldots, T x_{1}\right) \\
& \leq(n-1) q^{k}\left(\frac{1-q^{m-k}}{1-q}\right) A_{\frac{\lambda}{n^{n-2}}}\left(T x_{0}, T x_{0}, \ldots, T x_{1}\right) \\
& \leq(n-1)\left(\frac{q^{k}}{1-q}\right) A_{\frac{\lambda}{n^{n-2}}}\left(T x_{0}, T x_{0}, \ldots, T x_{1}\right)
\end{aligned}
$$

Letting as $k \rightarrow \infty$, we have

$$
\lim _{k \rightarrow \infty} A_{\lambda}\left(T x_{k}, T x_{k}, \ldots, T x_{m}\right) \leq \lim _{k \rightarrow \infty}(n-1)\left(\frac{q^{k}}{1-q}\right) A_{\frac{\lambda}{n^{n-2}}}\left(T x_{0}, T x_{0}, \ldots, T x_{1}\right)=0
$$

Thus, $\left\{T x_{k}\right\}$ is a Cauchy sequence in X. Since (X, A) is complete modular A-metric space, it has a limit in X such that

$$
\lim _{k \rightarrow \infty} y_{k}=\lim _{k \rightarrow \infty} T x_{k}=\lim _{k \rightarrow \infty} S x_{k+1}=z
$$

Since the maps T or S is continuous (assume that S is continuous), $\lim _{k \rightarrow \infty} S T x_{k}=S z$. Further, the maps S and T are w-compatible, therefore

$$
\lim _{k \rightarrow \infty} A_{\lambda}\left(S T x_{k}, \ldots, S T x_{k}, T S x_{k}\right)=0
$$

implies $\lim _{k \rightarrow \infty} T S x_{k}=S z$. From (3), we have

$$
\begin{aligned}
A_{\lambda}(S z, \ldots, S z, z) & =A_{\lambda}\left(T S x_{k}, \ldots, T S x_{k}, T x_{k}\right) \\
& \leq q A_{\lambda}\left(S S x_{k}, \ldots, S S x_{k}, S x_{k}\right) .
\end{aligned}
$$

Proceeding limit as $k \rightarrow \infty$, we have $S z=z$. Again by (3), we obtain

$$
A_{\lambda}\left(T x_{k}, \ldots, T x_{k}, T z\right) \leq q A_{\lambda}\left(S x_{k}, \ldots, S x_{k}, S z\right)
$$

and taking limit as $k \rightarrow \infty$, we have $z=T z$. Thus, we have $T z=S z=z$ and z is a common fixed point of T and S.

Finally, the uniqueness of z as the common fixed point of T and S shows easily as follows :

Suppose that $z_{1}(\neq z)$ be another common fixed point of T and S. Then,

$$
\begin{aligned}
A_{\lambda}\left(z, z, \ldots, z, z_{1}\right)=A_{\lambda}\left(T z, T z, \ldots, T z, T z_{1}\right) & \leq q A_{\lambda}\left(S z, S z, \ldots, S z, S z_{1}\right) \\
& =q A_{\lambda}\left(z, z, \ldots, z, z_{1}\right) \\
& <A_{\lambda}\left(z, z, \ldots, z, z_{1}\right)
\end{aligned}
$$

for $0 \leq q<1$, so this is a contradiction. Therefore, $z=z_{1}$. Hence, the common fixed point of T and S is unique.

Example 2.5. Let $X=[-1,1]$ and define $A_{\lambda}:(0, \infty) \times X^{n} \rightarrow[0, \infty]$ as follows :

$$
A_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\lambda}{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n}\left|x_{i}-x_{j}\right|
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and all $\lambda>0$. Clearly, (X, A) is a modular A-metric space. Let T and S be maps from X into itself defined as $T(x)=\frac{x}{7}$ and $S(x)=\frac{x}{3}$ for all $x \in X$. Then,

$$
T(X)=\left[-\frac{1}{7}, \frac{1}{7}\right] \subset\left[-\frac{1}{3}, \frac{1}{3}\right]=S(X)
$$

and the maps T, S are continuous. Also,

$$
A_{\lambda}\left(T x_{1}, T x_{2}, \ldots, T x_{n}\right) \leq q A_{\lambda}\left(S x_{1}, S x_{2}, \ldots, S x_{n}\right)
$$

holds for all $\overline{x_{1}, x_{n}} \in X$ and $\frac{3}{7} \leq q<1$. Moreover, the maps T and S are w compatible since

$$
\lim _{k \rightarrow \infty} A_{\lambda}\left(T S x_{k}, \ldots, T S x_{k}, S T x_{k}\right)=0
$$

where $\left\{x_{k}\right\}=\frac{1}{k}$ is a sequence for $k=1,2, \ldots$ in X such that

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} S x_{k}=\lim _{k \rightarrow \infty} \frac{1}{3 k}=0 \\
& \lim _{k \rightarrow \infty} T x_{k}=\lim _{k \rightarrow \infty} \frac{1}{7 k}=0
\end{aligned}
$$

for $0 \in X$. Thus, 0 is the unique common fixed point of T and S.

Acknowledgment

The referees have reviewed the paper very carefully. The authors express their deep thanks for the comments.

References

1. E. Aydin \& S. Kutukcu: Modular A-metric spaces. Journal of Science and Arts 17 (2017), no. 3, 423-432.
2. V.V. Chistyakov: Modular metric spaces, I: Basic concepts. Nonlinear Analysis: Theory, Methods and Applications 72 (2010), no. 1, 1-14.
3. \qquad : Modular metric spaces, II: Application to superposition operators. Nonlinear Analysis: Theory, Methods and Applications 72 (2010), no. 1, 15-30.
4. G. Jungck: Compatible mappings and common fixed points. International Journal of Mathematics and Mathematical Sciences 9 (1986), no. 4, 771-779.
5. E. Kaplan, S. Kutukcu: w-Compatible Maps in Modular A-Metric Spaces. submitted.
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science and Arts, Ondokuz Mayis University, Samsun, Turkey
Email address: elifaydinkaplan@gmail.com
${ }^{\text {b }}$ Department of Mathematics, Faculty of Science and Arts, Ondokuz Mayis University, Samsun, Turkey
Email address: skutukcu@omu.edu.tr

[^0]: Received by the editors November 03, 2020. Accepted March 11, 2021.
 2010 Mathematics Subject Classification. 47H10; 54H25.
 Key words and phrases. modular A-metric, w-compatible maps, fixed point, generalized metric.
 *Corresponding author.

