DOI QR코드

DOI QR Code

Characterizations of Water Quality, and Potential Relationships of Nitrogen Components and Microbes in the Mulgol Pond on Dokdo, Korea

독도 물골의 수질 특성 및 질소화합물과 미생물간의 잠재적 관계

  • WOO, SANG YOON (Department of Oceanography, Kyungpook National University) ;
  • LEE, HYEON BEEN (Department of Oceanography, Kyungpook National University) ;
  • JEONG, DONG HYUK (Department of Oceanography, Kyungpook National University) ;
  • AN, JE BAK (Department of Oceanography, Kyungpook National University) ;
  • YOUN, JIN SUK (Department of Biology, School of Life Science, Kyungpook National University) ;
  • PAK, JAE-HONG (Department of Biology, School of Life Science, Kyungpook National University) ;
  • PARK, JONG SOO (Department of Oceanography, Kyungpook National University)
  • 우상윤 (경북대학교 해양학과) ;
  • 이현빈 (경북대학교 해양학과) ;
  • 정동혁 (경북대학교 해양학과) ;
  • 안제박 (경북대학교 해양학과) ;
  • 윤진석 (경북대학교 생명과학부 생물학전공) ;
  • 박재홍 (경북대학교 생명과학부 생물학전공) ;
  • 박종수 (경북대학교 해양학과)
  • Received : 2020.12.22
  • Accepted : 2021.04.19
  • Published : 2021.05.31

Abstract

Water in the Mulgol pond on Dokdo (island), Korea, was historically used for drinking water, but now it has been no longer used for this purpose due to regionally low water quality. Since 2007, this pond has been covered with a metal lid to protect from pollutants of seabirds, indicating limited light penetration into the Mulgol pond. Here, we investigated water quality in the pond and potential relationships of nitrogen components and microbes in May, June, August, and November 2020. The source salinity ranged from 1.39 to 1.57 psu. Suspended solids (0.8~5.1 mg L-1) and chlorophyll-a (<0.01~0.49 ㎍ L-1) remained low. The concentration of dissolved inorganic nitrogen (DIN) was between 35.9 and 47.2 mg L-1. Thus, water in the Mulgol pond proves to be brackish water with low chlorophyll-a and high nutrients. This unique environment may be established by limited light intensity, sea fog (or seawater), and fecal pellets from many seabirds. Although the light source (800~8000 lux) was exposed to the four subsamples, chlorophyll-a concentrations were below <0.5 ㎍ L-1 during the incubation periods. This result suggests that the biomass of phytoplankton does not increase along with an increase in light intensity. Furthermore, the content of nitrate constituted more than 90% of DIN, and a significant negative correlation between nitrate concentration and bacterial abundance was shown in May and June 2020 during the light exposure experiments (R=-0.762, p<0.05). Thus, it is possible that bacteria may be a significant agent to reduce nitrate concentration in the Mulgol pond, the relationship between nitrate concentration and bacterial abundance may vary seasonally.

대한민국 대양섬 독도의 담수인 물골은 과거에 음용수로 활용되었지만 수질 악화 때문에 더 이상 음용수의 역할을 하지 못하고 있다. 2007년부터 물골은 바닷새에 의한 오염원의 유입을 차단하기 위해서 덮개를 덮어 보호하고 있으며 이는 매우 낮은 광도를 유지하고 있음을 의미한다. 본 조사는 2020년 5월, 6월, 8월, 11월 물골의 수질 평가 및 질소화합물과 미생물간의 잠재적 상호관계를 파악하기 위해서 수행되었다. 4차례 조사에서 물골의 염분은 1.39~1.57 psu의 범위로 나타났다. 또한, 낮은 부유물질량(범위: 0.8~5.1 mg L-1) 및 엽록소-a 농도(범위: <0.01~0.49 ㎍ L-1)와 상당히 높은 용존 무기 질소 농도(범위: 35.9~47.2 mg L-1)가 측정되었다. 따라서 물골 수질 특성은 엽록소-a 농도가 낮으며, 영양분이 매우 높은 기수환경이라 할 수 있다. 이러한 독특한 물골의 환경적 특성은 빛의 차단, 독도 주변의 해무(또는 해수)와 많은 수의 바닷새 배설물 때문으로 판단된다. 한편, 물골 시료에 광노출(800~8000 lux)을 했음에도 불구하고 엽록소-a는 모두 <0.5 ㎍ L-1로 낮은 값을 보였다. 이는 광도 증가에 따라 식물플랑크톤 생물량이 크게 증가되지 않았음을 시사한다. 더불어 용존 무기 질소 중 질산염이 >90% 차지하였고, 2020년 5월과 6월 광노출 실험에서 질산염 농도와 박테리아 개체수 간에 통계적으로 유의한 음의 상관관계가 나타났다(R=-0.762, p<0.05). 그러므로 독도 물골 내 종속영양 박테리아는 질산염 감소에 중요한 요인이고, 종속영양 박테리아와 질산염 간의 관계는 계절적인 차이가 있는 것으로 여겨진다.

Keywords

Acknowledgement

두 분 심사위원의 원고에 대한 유용하고 귀중한 고견에 감사의 말씀을 전합니다. 본 논문은 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2016R1A6A1A05011910과 NRF-2019R1A2C2002379).

References

  1. 국토해양부, 2010. 2010 독도 지반환경 모니터링, pp. 114-128.
  2. 김성수, 김대권, 손팔원, 이창훈, 하동수, 2003. 제주도 염지하수 수질의 시공간적 변화. 한국양식학회지, 16(1): 15-23.
  3. 경북대학교 울릉도.독도연구소, 2014. 5th 독도 천연보호구역 모니터링사업. 문화재청, 경상북도. 201 pp.
  4. 경북대학교 울릉도.독도연구소, 2017. 6th 독도 천연보호구역 모니터링사업. 문화재청, 경상북도. 263 pp.
  5. 경북대학교 울릉도.독도연구소, 2018. 7th 독도 천연보호구역 모니터링사업. 문화재청, 경상북도. 205 pp.
  6. 이인경, 최상훈, 2010. 옥천지역 천부지하수의 지구화학적 특성 및 질산염 오염 특성. 자원환경지질, 43(1): 43-52.
  7. 조병욱, 윤욱, 이병대, 송원경, 황재홍, 추창오, 2011. 독도 서도 물골 지하수의 유출특성. 지질공학회지, 21(2): 125-131.
  8. 최동한, 조병철, 1998. 독도 주변해역의 해양 미생물들의 분포 특성. 독도 인근해역의 환경과 수산자원 보전을 위한 기초 연구, 서울: 독도연구 보전협회, pp. 61-71.
  9. 환경부, 2020. 수질오염공정시험기준. 환경부고시 제2020-18호.
  10. Allen, A.E., M.H. Howard-Jones, M.G. Booth, M.E. Frischer, P.G. Verity, D.A. Bronk and M.P. Sanderson, 2002. Importance of heterotrophic bacterial assimilation of ammonium and nitrate in the Barents Sea during summer. J. Mar. Syst., 38(1-2), 93-108. https://doi.org/10.1016/S0924-7963(02)00171-9
  11. Bloem, J., M.J.B. Bar-Gilissen and T.E. Cappenberg, 1986. Fixation, counting, and manipulation of heterotrophic nanoflagellates. Appl. Environ. Microbiol., 52(6): 1266-1272. https://doi.org/10.1128/aem.52.6.1266-1272.1986
  12. Choi, J. and J.S. Park, 2020. Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Sci. Rep., 10(1): 1-11. https://doi.org/10.1038/s41598-019-56847-4
  13. Dauta, A., J. Devaux, F. Piquemal and L. Boumnich, 1990. Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia, 207(1), 221-226. https://doi.org/10.1007/BF00041459
  14. Fouilland, E., M. Gosselin, R.B. Rivkin, C. Vasseur and B. Mostajir, 2007. Nitrogen uptake by heterotrophic bacteria and phytoplankton in Arctic surface waters. J. Plankton Res., 29(4): 369-376. https://doi.org/10.1093/plankt/fbm022
  15. Fuhrman, J.A. and R.T. Noble, 1995. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol. Oceanogr., 40(7): 1236-1242. https://doi.org/10.4319/lo.1995.40.7.1236
  16. Gaskell, M. and R. Smith, 2007. Nitrogen sources for organic vegetable crops. Horttechnology, 17(4): 431-441. https://doi.org/10.21273/horttech.17.4.431
  17. Gillham, M.E., 1960. Destruction of indigenous heath vegetation in Victorian sea-bird colonies. Aust. J. Bot., 8(3): 277-317. https://doi.org/10.1071/BT9600277
  18. Kirchman, D.L., J. Moss and R.G. Keil, 1992. Nitrate uptake by heterotrophic bacteria: does it change the f-ratio? Arch. Hydrobiol., 37: 129-138.
  19. Kirchman, D.L. and P.A. Wheeler, 1998. Uptake of ammonium and nitrate by heterotrophic bacteria and phytoplankton in the sub-Arctic Pacific. Deep-Sea Res. Part I Oceanogr. Res. Pap., 45(2-3): 347-365. https://doi.org/10.1016/S0967-0637(97)00075-7
  20. Lindeboom, H.J., 1984. The nitrogen pathway in a penguin rookery. Ecology, 65(1): 269-277. https://doi.org/10.2307/1939479
  21. Middelburg, J.J. and J. Nieuwenhuize, 2000. Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary. Mar. Ecol. Prog. Ser., 203: 13-21. https://doi.org/10.3354/meps203013
  22. Mizutani, H., Y. Kabaya and E. Wada, 1991. Linear correlation between latitude and soil 15N enrichment at seabird rookeries. Sci. Nat., 78(1): 34-36. https://doi.org/10.1007/BF01134042
  23. Nagata, T. and D.L. Kirchman, 1991. Release of dissolved free and combined amino acids by bacterivorous marine flagellates. Limnol. Oceanogr., 36(3): 433-443. https://doi.org/10.4319/lo.1991.36.3.0433
  24. Nedwell, D.B., T.D. Jickells, M. Trimmer and R. Sanders, 1999. Nutrients in estuaries. Adv. Ecol. Res., 29: 43-92. https://doi.org/10.1016/S0065-2504(08)60191-9
  25. Park, J.S., 2016. First record of potentially pathogenic amoeba Vermamoeba vermiformis (Lobosea: Gymnamoebia) isolated from a freshwater of Dokdo island in the East Sea, Korea. Anim. Syst. Evol. Divers., 32(1): 1-8. https://doi.org/10.5635/ASED.2016.32.1.001
  26. Park, J.S., 2017. A new heterolobosean amoeboflagellate, Tetramitus dokdoensis n. sp., isolated from a freshwater pond on Dokdo island in the East Sea, Korea. J. Eukaryot. Microbiol., 64(6): 771-778. https://doi.org/10.1111/jeu.12409
  27. Pedros-Alio, C., J.I. Calderon-Paz, M.H. MacLean, G. Medina, C. Marrase, J.M. Gasol and N. Guixa-Boixereu, 2000. The microbial food web along salinity gradients. FEMS Microbiol. Ecol., 32(2): 143-155. https://doi.org/10.1111/j.1574-6941.2000.tb00708.x
  28. Porter, K.G. and Y.S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25(5): 943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  29. Sherr, B.F., E.B. Sherr and T. Berman, 1983. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Environ. Microbiol., 45(4): 1196-1201. https://doi.org/10.1128/aem.45.4.1196-1201.1983
  30. Shin J.G., M.G. Kim, C.G. Kang, S.J. Hwang and M.H. Jeong, 2003. Freshwater ecosystem (Mulkol) and periphytic algal biomass in the Tok island, Korea. Korean J. Limnol., 36(4): 463-466.
  31. Szpak, P., J.F. Millaire, C.D. White and F.J. Longstaffe, 2012. Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). J. Archaeol. Sci., 39(12): 3721-3740. https://doi.org/10.1016/j.jas.2012.06.035
  32. Thimijan, R.W. and R.D. Heins, 1983. Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience, 18(6): 818-822.
  33. Trottet, A., C. Leboulanger, F. Vidussi, R. Pete, M. Bouvy and E. Fouilland, 2016. Heterotrophic bacteria show weak competition for nitrogen in Mediterranean coastal waters (Thau Lagoon) in autumn. Microb. Ecol., 71(2), 304-314. https://doi.org/10.1007/s00248-015-0658-8
  34. Wang, T., L. Zhang, L. Bo, Y. Zhu, X. Tang and W. Liu, 2019. Simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of NaCl by Halomonas bacteria. IOP Conf. Ser.: Earth Environ. Sci., 237(5), 052033. https://doi.org/10.1088/1755-1315/237/5/052033
  35. Wheeler, P.A. and D.L. Kirchman, 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol. Oceanogr., 31(5): 998-1009. https://doi.org/10.4319/lo.1986.31.5.0998
  36. Wild, A., 1981. Mass flow and diffusion. In: The chemistry of soil processes, edited by D.J. Greenland, D.J. and Hayes, M.H.B., Wiley, Chichester, United Kingdom, pp. 37-80.
  37. Yakimov, M.M., P.N. Golyshin, S. Lang, E.R. Moore, W.R. Abraham, H. Lunsdorf and K.N. Timmis, 1998. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Evol. Microbiol., 48(2), 339-348.