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Introduction 

In 2003, the world manifested an unprecedented breakthrough by completing the first full 
human genome sequencing in history. It took 13 years and costed $2.7 billion [1]. Since 
then, the cost and time to sequence genomes have decreased significantly which led to an 
increase in the number of sequenced genomes. This allowed researchers in many fields to 
better answer biological questions by using a set of recently developed computational tools 
to address problems that were hard or impossible to solve for many decades. However, the 
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continuous increase of generated data has imposed growing diffi-
culties in analyzing them. 

Nowadays, Genomic data is one of the fastest growing big data-
sets in the world, and as of 2025 it is supposed to become the fourth 
largest source of Big Data after Astronomy, YouTube, and Twitter 
[2]. Numerous genomes of many species are widely sequenced and 
stored in public online Gene Banks. These Gene Banks are provid-
ed by many biology institutes like the National Institute of Health 
(NIH) in the United States [3] and the National Institute of Genet-
ics (NIG) in Japan [4]. 

This work emerges within the context of the current coronavirus 
disease 2019 pandemic. Thus, it is principally meant to contribute 
to understanding severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) mutation behavior. Therefore, limiting its spread all 
over the world, by providing a genomics tool that will answer rele-
vant questions regarding SARS-CoV-2 virus genomic evolution. 

SARS-CoV-2 is a positive-sense single-stranded RNA virus 
which keeps mutating in an unpredictable way. We can find a large 
number of SARS-CoV-2 RNA sequences stored in NCBI Virus re-
pository which is accessible to the public through a simple internet 
connection [5]. 

Clustering SARS-CoV-2 sequences and the classification of the 
different variations of the virus is crucial to demystifying its unpre-
dictable mutations and thus limiting its spread. The virus medical 
treatment, and confinement policies, might tangibly differ from a 
village/city/region/country to another depending on the residing 
SARS-CoV-2 virus type. Reinforced by the early confinement and 
travel restriction laws, the SARS-CoV-2 viruses are very likely to be 
limited in the number of types. However, this does not exclude the 
probability of having virus mutations that happened locally in each 
village/city/region/ country as well. In this project, we are identify-
ing the existing SARS-CoV-2 virus types and track back the muta-
tions that have happened or are still happening. In fact, clustering is 
a data mining method that aims to identify similar groups in huge 
datasets, and is widely used in various bioinformatics fields, such as 
cancer class discovery [6] and protein structure prediction [7]. 

Belonging to the realm of Big Data, SARS-CoV-2 RNA sequenc-
es mandates high-performance computing (HPC) for processing. 
Furthermore, we need optimal efficient algorithms and approaches 
to measure similarities between each pair of RNAs. In this context, 
we developed a distributed approach, based on the Hadoop frame-
work and started comparing SARS-CoV-2 RNA sequences by using 
the longest common subsequence (LCS) algorithm to finally mea-
sure similarities between sequences and build relevant clusters. 
Computing the LCS consists of finding the longest subsequence 
common to two sequences. LCS algorithm leverages dynamic pro-

gramming (DP) to simplify the problem by breaking it down into 
simpler sub-problems in a recursive manner. In bioinformatics, DP 
is commonly used for tasks like sequence alignment, protein fold-
ing, RNA structure prediction, and protein-DNA binding [8,9]. 

To prove the indispensability of HPC for RNA sequences pro-
cessing, we run extensive experimentations on a Hadoop cluster. 
We used variable Hadoop worker node sets along with a variable 
workload. The latter consisted of varying the number of pairwise 
comparisons between the different collected RNA sequences. 
Both used data and obtained results are made open and available 
online [10]. 

Data science (DS) is considered a novel and very promising sci-
ence that combines statistics, data analysis, informatics, and related 
methods to better understand and analyze actual ‘phenomena’ in-
volving large amounts of data [11]. It is an interdisciplinary field 
that focuses on extracting knowledge from large data sets and ap-
plying that knowledge and actionable insights to solve problems. 

There are five principal DS steps that should be performed cor-
rectly to reach the objective of this work: 
‒ Acquisition: Acquiring SARS-CoV-2 RNA sequences 
‒ Preparing: It consists of exploring and pre-processing data in such 

a way that only valid and adequate data are kept for appropriate 
analysis. 

‒ Analyze: This is the step where we are leveraging on acquired 
skills in HPC, and distributed computing in general, to optimize 
the processing. The analysis in this work is divided into three steps 
that we are detailing later in this paper.  

‒ Report: Once the analysis is done, the remaining challenging 
problem would be to visually present the results in an efficient and 
readable way to explain to the action makers what should be done 
to improve the results in terms of biological value.  

‒ Action: After presenting the blueprint for an open-source HPC 
and LCS-based platform for SARS RNA clustering. This can help 
researchers in medicine and virologist in clustering and identify-
ing the rapid variance in SARS-CoV-2. 

Main Text 

Sequence alignment 
In order to measure the similarity between genomic sequences de-
spite their nature, we are opting for the most conventional approach 
that uses sequence alignment techniques. Sequence alignment is a 
daily task of most biologists in order to find the relationship or sim-
ilarity between biological sequences. In bioinformatics, a sequence 
alignment is considered a way of arranging the sequences of DNA, 
RNA, or protein to identify regions of similarity that may be a con-
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sequence of functional, structural, or evolutionary relationships be-
tween the sequences [12]. Most of the interesting genomic prob-
lems require the alignment of lengthy sequences with numerous 
variations. 

There are two categories of alignment; global alignment and lo-
cal alignment. Global alignment assumes that the two sequences to 
align are closely related and of the same length. The alignment is 
carried out from the beginning until the end of the sequence. A 
general algorithm to perform global alignment is the Needle-
man-Wunsch algorithm [13]. Sequences which are suspected to 
have similar or even dissimilar subsequences can be compared us-
ing local alignment method. This method finds local regions with a 
high level of similarity. A general algorithm to perform local align-
ment is the Smith-Waterman algorithm [14]. 

Needleman-Wunsch alignment is based on evaluating the collin-
earity of two amino acid or nucleotide sequences; it considers a 
global alignment of the sequences and works optimally when com-
paring highly similar sequences. The Smith-Waterman algorithm 
considers local alignments of similar regions that fall within what 
may be dissimilar sets of sequences. Both algorithms can be too 
simplistic thus slow for large sequences. Nevertheless, the exact lo-
cal and global alignments are those returned by Smith-Waterman 
and Needleman-Wunsch algorithms, respectively. 

Because of the slowness of conventional algorithms aforemen-
tioned, many alignment tools have been developed to address that 
problem. The vast majority of algorithms used by the bioinformati-
cians nowadays borrow from the concepts of either or both of the 
Needleman-Wunsch and Smith-Waterman algorithms with the 
only advantage of accelerating the processing time. BLAST (Basic 
Local Alignment Search Tool) [15] is the most popular local align-
ment program for similarity search and sequence alignment for 
large datasets. The BLAST algorithm is a heuristic algorithm. It 
generates a list of short word matches (default word size is 11 for 
nucleotide) in query sequence. The database is then searched for 
the occurrences of these words. The matching words are extended 
to the local alignment between two sequences and these extensions 
are continued until the score is below a threshold. Another local 
alignment tool is the FASTA program developed by Pearson and 
Lipman [16]. FASTA searches for short sequences called k-tuples 
(which are similar to words in BLAST) to identify un-gapped 
alignments. The alignments are tested and merged into a local 
alignment in order to find the optimal local alignment based on the 
threshold and score. FASTA provides tools similar to BLAST. 
However, it also performs global alignments which are not provid-
ed by BLAST. 

BLAST and FASTA are based on heuristic algorithms, and due 

to the huge volume of produced data, it is impossible to process all 
data in only one computer accurately. It is then mandated to use an 
appropriate approach along with an accurate algorithm to measure 
similarities between large sequences. Thus, LCS would be the most 
appropriate approach to compute similarity between a pair of se-
quences since it is combining both approaches, i.e., local and global 
alignment. Neither, the lengths of both sequences and precision 
will be a constraint to respect. 

Problem statement 
Regardless of the field on which clustering is used, it is known that 
all clustering algorithms are either implicitly or explicitly oriented 
by a variety of similarity measures that quantifies the distinctness of 
each pair of elements. The majority of clustering algorithms used in 
the literature require considering the sequences (variables) as a set 
of parameters that are numerical values in order to compute the 
similarity using distance algorithms. Thus, for genomic sequences 
clustering, this is not the best option to go for since it will lead to 
extending the processing time due to the large number of nucleo-
tides or amino acids present in the sequences. Also, and even if fea-
tures should be extracted, there is no clue what features should be 
involved to better characterize the sequences. Then, another step 
will be needed to look for the most relevant features among all ex-
tracted features which will add more time to the process. 

In genomics, very similar to the alignment algorithms, the LCS 
algorithm is used to measure dissimilarity between sequences. 
Moreover, it has shown efficient results in compressing sequences 
of DNA [17]. Computing the length of the LCS between a pair of 
sequences along with using an appropriate similarity measure 
would be an alternative to get rid of the step of extracting features 
and get accurate results of clustered SARS-CoV-2 sequences. 

The great number of sequences needed to achieve the ultimate 
goal of this work, and the nature of the SARS-CoV-2 itself whose 
size varies from 26K to 32K nucleotides implies another challenge 
that resides in the need to store sequences and process them in a rea-
sonable time. The sequences’ data falls within the realm of Big Data. 
In fact, SARS-CoV-2 is a virus which keeps mutating all the time, 
and so far, there are more than 48.000 SARS-CoV-2 RNAs stored in 
NCBI Virus repository submitted from all over the world [18]. 

We have noted in our primary experiment, performed on an or-
dinary laptop, that the time to run a simple pairwise comparison 
using the LCS between sequences is around 9 s. To compare all n 
RNA sequences among each other, i.e., a set-comparison, we need 
(n * (n-1)/2) single pairwise comparisons: with 100 RNAs, and 
with 9 seconds for each comparison, the total needed time becomes 
(100 ×  99)/2 ×  9 (s) =  12 h approximately. With 10.000 samples, 

3 / 11https://doi.org/10.5808/gi.21056

Genomics & Informatics 2021;19(4):e49



we would need 14 y. This is where HPC comes into play and proves 
indispensable to optimize the execution time. 

HPC infrastructure 
Nowadays, biological data is exploding into petabytes, necessitating 
HPC to assemble a variety of genomic datasets and compare them. 
HPC has been around since the dawn of computing, and it was 
used to solve and analyze complex problems requiring substantial 
compute power in terms of both processing and storage [19-22]. 

In this work, we deployed Hadoop on a cluster of five computers 
to store the data consisted of all SARS-CoV-2 sequence pairs which 
are then processed by computing the length of the LCS. 

Hardware 
The use of HPC capabilities proves crucial to address the problem 
of high execution time. For our HPC infrastructure, we opted for 
the most appropriate hardware resources for storing, computing, 
and communicating data efficiently. 

We built our infrastructure using five computers on which data 
should be distributed in the form of data chunks which are small 
data portions of possible sequence pairs in order to get processed in 
parallel. Each data chunk is locally stored in at least one computer 
that is responsible for its processing. This is done to optimize the 

execution time. All the data needed for this work are retrieved from 
the NCBI Virus repository on a single computer. This computer 
does not perform any computations except to distribute and collect 
data via the network. It is called the Master. 

The Master and all other computers (the Slaves) that are respon-
sible for processing data have 8 GB memory capacity, and the com-
munication between the Master and all Slaves is possible by using a 
switch with a connection speed that goes up to 1,000 Mbp. 

Hadoop deployment 
Our HPC infrastructure consists of five computers linked through 
a network on which Hadoop [23] is deployed in each machine. 
This gives the ability to store genomic Big Data through Hadoop’s 
distributed file system (HDFS) among different nodes, and to pro-
cess data using the well-known MapReduce [24] programming 
paradigm that runs the “jobs” on selected chunks of Big Data, see 
Fig. 1. 

HDFS contains two kinds of nodes: 
‒ Namenode, which is the master node whose task is to manage the 

distributed file system by keeping relevant metadata and name-
space entries. 

‒ Datanodes (workers), which store and extract blocks upon requests 

Fig. 1. The general architecture of high-performance computing service in a private datacenter using Hadoop [25].
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from the Namenode. 
On the other hand, we have the MapReduce component that 

takes care of the processing of the Big Data stored in the HDFS. 
This involves three main entities: 
‒ JobTracker: Coordinates job execution by splitting the main job 

into tasks, and delegates them to the TaskTrackers while consider-
ing two essential factors: load balancing and location of the 
chunks in the HDFS Datanodes. 

‒ TaskTracker: The MapReduce horse-workers that run the tasks as-
signed by the JobTracker. ‒ HDFS: Responsible for providing the 
chunks to the TaskTrackers. 
To distribute algorithms/programs (e.g., using MapReduce) 

among clustered CPUs, the program needs to be “distributable.” 
For instance, to compute the average of a large set of numbers (e.g., 
1 trillion numbers), we can use a cluster of 10 nodes and divide (i.e., 
map) the 1 trillion set of numbers equally among the different 
nodes. Then, every node will separately compute its (local) average 
and report the result back in order to compute the grand average. 
This way, we leveraged HPC by having 10 CPUs working in parallel 
to perform a time-consuming task, alike the inherent parallel pro-
cessing inside a single super-computer where CPUs are sharing 
both the memory and the clock. Unfortunately, not all algorithms 
are “distributable”: If we take the well-known “shortest-path” algo-
rithm on graphs. We cannot divide (Map) the Graph into smaller 
graphs and distribute them among nodes. It is unfeasible as the an-
swer to “shortest path?” would involve treating the whole input/
graph as a single entity. 

Similarly, in genomics, when comparing two DNAs/RNAs, the 
latter should not be dissected into parts and then distributed among 
the different clustered nodes to do the comparison. Fortunately, the 
SARS-CoV-2 RNAs are far less in terms of size than human DNAs: 
30 kB vs. 3 GB, respectively. This corresponds to an order of magni-
tude of 0.0001%. However, to run a comparison between hundreds 
of RNAs, HPC proves indispensable as the comparison follows a 
polynomial growth of O(n2). 

Proposed approach 
In this section, we are presenting the proposed approach to cluster 
SARS-CoV-2 sequences and describe all steps needed to reach the 
final objective of clustering SARS-CoV-2 sequences.  

Genomics value chain (GVC) is the conventional pipeline to 
process genomic data. It delineates the different steps from biologi-
cal substances (e.g., blood, saliva, etc.) to useful information that 
can be applied in curing diseases or improving the health of citizens. 

GVC consist of five stages as shown in Fig. 2. 
In this work, the Sampling and Sequencing steps are already car-

ried out by NCBI, and data is openly available. 
We are leveraging on acquired skills in HPC, and distributed 

computing in general, to optimize the GVC analysis step (3). Then, 
after successfully carrying out the Analysis step where clustering is 
performed, the other main remaining challenge is step-4 (i.e., Inter-
pretation). This consists of visualizing the results in a readable way 
in order to well understand them, and this is where specialists in 
immunology, biology and medicine should play a decisive role in 
confirming its relevance to our target goal and propose solutions in 
the Application step. 

Nowadays, researchers are interested in what DS has to offer in 
the field of bioinformatics, as in any other fields with access to large 
data sets. In fact, DS details the GVC especially when working with 
large data sets in which data is not totally valid and should get pre-
pared for analysis. After collecting more than 6.000 SARS-CoV-2 
sequences from NCBI Virus repository and we tweaked our DP al-
gorithm for computing the lengths of LCS using the Tabulation ap-
proach. 

In fact, there are two different ways to store the values of a com-
putation so that the values of a sub-problem can be reused. Both 
approaches conclude to the same result, the difference simply lies 
in the way of conveying the message and that’s exactly what Bot-
tom-Up (Tabulation) and Top-Down (Memoization) DP do. For 
Bottom-Up approach, as the name itself suggests starting from the 
bottom (first position) and accumulating answers to the top desti-
nation state (the whole sequence). In contrast, for Top-Down ap-
proach, we begin at the topmost destination state and work our way 

Fig. 2. Genomics value chain. (1) Sampling: collecting DNA/RNAs source, (2) Sequencing: generating the order of the nucleotides (A, T, C, G) 
in the DNA/RNA, (3) Analysis: compute dissimilarity between sequences using longest common subsequence algorithm, (4) Interpretation: 
translating observed results into knowledge, (5) Application: proposing solutions.
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down to the bottommost base state, counting the values of states 
that can reach the destination state. We used Tabulation instead of 
Memoization as Tabulation shows less processing time compared 
to Memoization. The outputs of the LCS algorithm serve then to 
compute dissimilarity between each pair of sequences in the dataset 
and which in return are used to build clusters on which each cluster 
would contain similar sequences. 

DS step 1: data retrieving 
It is the first step of the process. We collected 6.326 SARS-CoV-2 
RNA sequences from NCBI Virus repository for the matter of this 
work. The first observation that we noticed concerning the dataset 
is that sequences are of different sizes; ranging from 20 nucleotides 
to 30K nucleotides. 

DS step 2: data preparing 
In fact, this step splits into two complementary steps that are neces-
sary to perform before moving towards analysis. First, the nature of 
the studied genomic data must be known the best possible as well 
as its properties and characteristics. Therefore, we proceed to know 
the nature of data by performing some research. This confirmed 
that the SARS-CoV-2 RNA sequence length ranges from 26K to 
32K bases and that the GC-content, which is a good scale to mea-
sure the correctness of structure data by itself, is around 38% 
[26,27]. The second sub-step is the process that complements the 
knowledge of the studied data nature. It is data cleansing in which 
all erroneous and irrelevant data are removed from the data set. In-
deed, all data that are far from having a GC-content around 38% 
and sequences that are not ranging from 26K to 32K in length are 
removed. Sequences that show incertitude during sequencing are 
removed as well. Thus, out of 6.326 sequences, only 41.6% that 
corresponds to 2.635 sequences may be processed.  

Therefore, 2.635 sequences can be used in this work without 

worrying about working with erroneous data. During this study, we 
limited ourselves to 120 RNAs from the collected SARS-CoV-2 se-
quences and tweaked our DP algorithm to use Tabulation running 
the LCS algorithm along with the proposed distance and distance 
algorithms. 

The great number of removed sequences that are stored in the 
NCBI database (approximately 58.4%) is due to its submission-free 
policy. Thus, any entity in the world has the ability to submit what-
ever sequence without restrictions or checking by NCBI. 

DS step 3: analysis 
The analysis is the main focus of this work. The final objective is to 
cluster SARS-CoV-2 sequences by computing the lengths of LCSs 
and measure dissimilarity based on LCSs lengths for each pair of 
sequences. The analysis flowchart we adopted in this work is illus-
trated in is Fig. 3. 

After collecting and cleansing data, we start analyzing sequences. 
The analysis begins by performing comparisons between each pair 
of sequences in the dataset using the LCS algorithm. Then, mea-
sure dissimilarity to eventually cluster the sequences. Once all the 
sequences get clustered, the relevance of the clusters to the proper-
ties of each sequence should be checked and used as a performance 
metric for the proposed methodology. 

Length of LCS computing 
There are two different approaches used conventionally in bioin-
formatics to measure similarities over a dataset of nucleotide se-
quences, that are local and global alignments. Calculating a global 
alignment is a type of global optimization that requires the align-
ment to span the complete length of the query sequences while also 
requiring that the sequences be of the same length. Local align-
ments, on the other hand, detect similar sections within long se-
quences that are typically highly diverse overall. Local alignments 

Fig. 3. Analysis flowchart. LCS, longest common subsequence.

Pre-processed 
data set

Compute length of 
the LCS

Check if relevant

Measure
distance/dissimilarity Build clusters
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are generally preferred, but they can be more difficult to calculate 
due to the additional difficulty of locating similarity regions [28]. 
Even though, some heuristic/probabilistic methods have been de-
signed for large-scale database search; they do not guarantee to find 
best matches [15,16]. Then, computing LCS came to be a good 
choice to measure similarity since it does not show any restrictions 
regarding the sequence’s length when comparing a pair of sequenc-
es as a whole and is accurate as well when used next to an appropri-
ate distance measurement formula. 

The LCS problem is a classical problem in computer science. 
Given two strings X and Y, the LCS problem is to find the longest 
subsequence common to both X and Y. In genomics, very similar to 
the alignment algorithms, the LCS algorithm is used to measure 
dissimilarity between sequences. Moreover, it has shown efficient 
results in compressing sequences of DNA [17], which is of major 
utility when large data needs to be shared or stored in limited stor-
age resources. Tabulation is an approach where we solve a problem 
by first filling up a table, and then computing the solution to the 
original problem based on the previous results in this table. 

All possible pairs of characters are represented in a 2D matrix. 
The sequences are written across the top and down the left side of 
the matrix, except that an extra row and column are added in the 
first position of the matrix to allow the process to begin. The overall 
computation of LCSs lengths is performed using the MapReduce 
programming paradigm where each worker is responsible for the 

mapping of a subset of sequence pairs to their corresponding LCS 
lengths. 

Following is the algorithm that we are adapting to compute the 
length of the LCS of each pair of SARS-CoV-2 sequences (Fig. 4). 

L (n, m) is the length of the LCS, and it is a parameter we are us-
ing in addition to the lengths of both sequences X and Y to com-
pute the dissimilarity between the sequences.  

We did implement the algorithm using an ordinary laptop and 
we obtained the results presented in Table 1. 

From Table 1, we note that the time it took to run a hundred 
pairwise comparisons is 14 minutes approximately. This means that 
it takes around 9 s to finish one single comparison on average. To 
compare n RNA sequences among each other, i.e., a set-compari-
son, we need (n * (n–1)/2) single pairwise comparisons: 
‒ With 30 RNAs, we performed (30 * 29)/2 =  435 comparisons 

Fig. 4. Longest common subsequence (LCS) algorithm.

Algorithm  LCS: Longest Common Subsequence 
Input: Strings X and Y with n and m elements, respectively 
Output: For i = 1,…,n, j = 1,...,m, the length L[i, j] of a longest string that is a subsequence of 
both the string      X[1..i] = x1 x2…xi and the string Y [1.. j] = y1 y2…yj
Start
for i =0 to n do 

L[i,0] = 0 
for j =0 to m do 

L[0,j] = 0 
for i =1 to n do 

for j =1 to m do 
if xi = yj then 

L[i, j] = L[i-1, j-1] + 1 
else 

L[i, j] = max{L[i-1, j] , L[i, j-1]} 
End

Table 1. Execution time of the comparisons of different portions of 
data using an ordinary laptop

No. of sequences No. of comparisons Execution time (min)
5 10 2
10 45 6
15 105 14
20 190 26
25 300 41
30 435 59

7 / 11https://doi.org/10.5808/gi.21056

Genomics & Informatics 2021;19(4):e49



and it took about 59 min to finish. 
‒ With 2.635 samples, we would need about 1 y and this is where 

HPC comes into play and proves indispensable in bioinformatics. 
Afterwards, we deployed our LCS algorithm on a Hadoop clus-

ter of four data nodes. We compared the execution time on differ-
ent portions of data using different numbers of data nodes to as-
sess the performance and prove the importance of our HPC archi-
tecture. Execution times where the number of sequences ranges 
from 5 to 100 were computed experimentally. However, for num-
ber of sequences beyond 100, we estimated the execution time by 
computing the average time it takes to perform a single pairwise 
comparison for each number of nodes. Obtained results are de-
picted in Fig. 5. 

As the data set size increases, the margin between the execution 

time using different nodes increases drastically. Thus, the more 
nodes we add to the cluster, the best performance we get. Besides 
showing the importance of using HPC to decrease execution time, 
the core of this work mandates using the results obtained from the 
deployment of the LCS algorithm to move to the next step of com-
puting distance between all sequences. We constructed a 3D graph 
that visualizes the range of the length of the LCSs obtained for all 
sequence pairs, see Fig. 6. 

X and Y axes correspond to all sequences constituting the data-
set, and Z axis corresponds to the length of the LCS. 

Distance/dissimilarity measuring 
In order to measure dissimilarity between sequences, we are pro-
posing an algorithm that is based on the LCS algorithm output 
along with the lengths of both sequences (Fig. 7). 

The idea is to have a positive integer as a measure that approxi-
mates the addition (l1+l2) to (2*LCS (X, Y)) whenever a pair of 
sequences are similar. l1+l2 (the addition of a pair of sequences 
lengths in the dataset) would always be greater or equal to two 
times the length of the LCS. The coefficient f is set to be greater or 
equal to 1 depending on the lengths of both sequences, f*(l1+l2) 
gets high whenever the value | len(seq1)-len(seq2) | (1) is high. We 
multiply (1) by 2 to make it more distant for unsimilar sequences. 
This formula considers the difference of sequences lengths to have 
an impact on the resulting output. However, we can get rid of the 2* 
operation used to get the coefficient f but it would be harder to de-
tect the similarities since sequences would not be distant enough to 
perform appropriate clustering according to the formula. 

Based on the proposed algorithm, sequences with the least dis-
tance correspond to those that are the most similar to each other. 

Fig. 5. Estimated execution time of longest common subsequence 
algorithm using different numbers of nodes.

Fig. 6. Range of the longest common subsequence (LCS) lengths.  X and Y axis represent the sequences Z axis represent LCSs lengths.
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We are using the output of the distance algorithm to cluster all the 
sequences of our dataset. The results of the algorithm are arranged 
in a 2D matrix containing dissimilarity values between all pair of se-
quences constituting the dataset. The 2D matrix is afterwards used 
as input to the clustering algorithm, which is presented in the next 
section. 

Clustering 
Sequence clustering algorithms are used in bioinformatics to group 
biological sequences that are somehow related. Some clustering al-
gorithms use single-linkage clustering, constructing a transitive clo-
sure of sequences with a similarity over a particular threshold.  

UCLUST [29] and CD-HIT [30] are the most used algorithms 
to cluster amino acid sequences and using single-linkage clustering 
approach. They employ a greedy algorithm that finds a representa-
tive sequence for each cluster and assigns a new sequence to that 

cluster if it is sufficiently close to the representative; if no match is 
found, the sequence becomes the representative sequence for a new 
cluster. The alignment of sequences is often used to calculate the 
similarity score. For these algorithms, the threshold value is ambigu-
ous. 

A better alternative to avoid uncertainty of the threshold value is 
through UPGMA (unweighted pair group method with arithmetic 
mean) [31], which is a simple agglomerative hierarchical clustering 
method intended for the construction of rooted trees that reflects 
the structure in a matrix of pairwise similarity (or a dissimilarity) 
matrix. First, each sequence is considered as a cluster. The closest 
two clusters are combined into a higher-level cluster at each step 
until only one cluster remains. Clustering is done simply by taking 
the dissimilarity matrix as input and at each step, the pair of se-
quences A and B corresponding to the lowest dissimilarity value are 
combined to form a new cluster. Then, distances between the new-

Fig. 7. Dist algorithm.

Fig. 8. UPGMA (unweighted pair group method with arithmetic mean) algorithm.

Algorithm Dist 
Input: Strings X, Y with l1 and l2 elements, respectively, and the length of the longest common 
subsequence
Output: The distance between two sequences within the dataset
Start
if l1 = l2 then

f = 1
else

f = 2*abs(l1-l2)
dist =f*(l1+l2)-2*LCS (X, Y)
End

Algorithm UPGMA 
Input: Distance matrix containing all pairwise distances
Output: Hierarchical clusters
Start
Initialization: Start with N clusters of 1 element each, where N is the number of sequences.
Iteration: 

• Combine clusters Ci and Cj for which Dist(Ci, Cj) is minimal
• Connect Ci and Cj, and place it at height Dist(Ci, Cj)/2

Termination: When a single cluster remains
End
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ly formed cluster and all other sequences must be updated to be-
come the mean of both distances Dist(A, X) and Dist(B, X) 

For a better understanding of the UPGMA algorithm, we delin-
eate it (Fig. 8). 

Assessment 
In order to assess the performance of the whole proposed method-
ology used to cluster SARS-CoV-2 sequences, the geolocation 
property as well as the identifier of each sequence are taken into 
consideration to visualize the tree resulting in the clustering step. 
The results are visualized in form of a large dendrogram, that we 
made available online [10]. 

As shown in the dendrogram, sequences coming from near geo-
locations are clustered together. Therefore, our proposed approach 
is accurate and we believe it will work fine in other applications of 
bioinformatics where no information about amino acids sequences 
is known and the studied popularity structure is mutating from an 
individual to another individual. 

DS step 5: action 
This concerns specialists in medicine and virologists in particular. 
In here, we presented the blueprint for an open source HPC and 
LCS-based platform for SARS RNA clustering. This can help re-
searchers in medicine and virologists in clustering, categorizing, 
and thus identifying and tracking the rapid variance in SARS-
CoV-2. Thus, contributing to limiting its widespread and threat. 

All over the world, SARS-CoV-2 has impacted our daily lives to 
unexpected levels. All efforts need to be annexed towards under-
standing the evolution of the virus. To achieve this, ICT through 
HPC proves to be indispensable especially that the SARS-CoV-2 
data falls within the realm of Big Data. The latter mandated the use 
of HPC. By presenting and promoting open source and cheap solu-
tions, scientific communities all over the world can make their con-
tribution towards limiting, and even stopping, the virus impact. 

Conclusion 

In this paper, we presented the first phase we see needed to demys-
tify SARS-CoV-2 unpredictable mutations, that consists of cluster-
ing/regrouping similar sequences, i.e., sequences presenting no im-
portant mutations that eventually form a putative SARS-CoV-2 
type or sub-type. The resulting clusters can further get interpreted 
in future works aside with putative biological factors to accurately 
demystify the way the virus mutates and possibly predict the struc-
ture of the virus resulting when a host A affects a person B using ap-
propriate machine learning model. 

We first presented the algorithms and tools mostly used in bioin-
formatics to measure similarity between genomic sequences. We 
presented a DS approach aiming to extract value from our collected 
SARS-CoV-2 RNA sequences. We discussed and presented how 
HPC proves to be a better alternative for addressing slow execution 
problems faced in bioinformatics. Besides, we listed involved steps 
in transforming raw SARS-CoV-2 sequences into valuable informa-
tion, i.e., the putative existing variations of the virus. We computed 
the execution time it takes to perform pairwise sequences compari-
sons in an ordinary computer and compared it to using HPC clus-
ters with different number of nodes. 

By presenting an open source and affordable cluster based HPC 
platform, we are contributing, and thus encouraging, the research 
community to use and adapt it to their typical needs. Having this 
said, the ultimate goal is to contribute to understanding and track-
ing SARS-CoV-2 unpredictable mutations and limit its widespread 
and impact on humanity. 
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