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Introduction 

Social media platforms like Twitter, Instagram, and Facebook provide researchers with un-
precedented insight into personal behavior on a global scale. Twitter is currently one of the 
leading social networking services with over 353 million users and reaching ~6% of the 
world’s population over the age of 13 [1]. It is also quickly becoming one of the most pop-
ular platforms for conducting health-related research because of its use for public health 
surveillance, pharmacovigilance, event detection/forecasting, and disease tracking [2,3]. 
During the last decade, Twitter has provided substantial aid in the surveillance of pandem-
ics, including the Zika virus [4], H1N1 (or Swine Flu) [5], H7N9 (or avian/bird flu) [6], 
and Ebola [7]. Twitter has been used extensively during the 2020 coronavirus disease 
2019 (COVID-19) outbreak [8], providing insight into everything from monitoring com-
munication between public health officials and world leaders [9], tracking emerging symp-
toms [10] and access to testing facilities [11], to understanding the public’s top fears and 
concerns about infection rates and vaccination [12]. While it is clear that Twitter contains 
invaluable content that can be used for a myriad of benevolent endeavors, there are many 
challenges to accessing and leveraging these data for clinical research and/or applications.  

Researchers face a myriad of challenges when trying to utilize Twitter data. Aside from 
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The use of social media data, like Twitter, for biomedical research has been gradually in-
creasing over the years. With the coronavirus disease 2019 (COVID-19) pandemic, re-
searchers have turned to more non-traditional sources of clinical data to characterize the 
disease in near-real time, study the societal implications of interventions, as well as the se-
quelae that recovered COVID-19 cases present. However, manually curated social media 
datasets are difficult to come by due to the expensive costs of manual annotation and the 
efforts needed to identify the correct texts. When datasets are available, they are usually 
very small and their annotations don’t generalize well over time or to larger sets of docu-
ments. As part of the 2021 Biomedical Linked Annotation Hackathon, we release our data-
set of over 120 million automatically annotated tweets for biomedical research purposes. 
Incorporating best-practices, we identify tweets with potentially high clinical relevance. 
We evaluated our work by comparing several SpaCy-based annotation frameworks against 
a manually annotated gold-standard dataset. Selecting the best method to use for auto-
matic annotation, we then annotated 120 million tweets and released them publicly for 
future downstream usage within the biomedical domain. 
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the potential ethical challenges, which will not be discussed in this 
work (see Webb et al. [13] for a review of this area), it can be difficult 
to obtain access to these data and hard to keep up with real-time 
content collection [14,15]. Once the data have been obtained, re-
searchers must then perform several preprocessing steps to ensure 
the data are sufficient for analysis. Concerning COVID-19, there are 
several existing social media repositories [16-20]. Unfortunately, 
most of these repositories are infrequently updated, do not provide 
any preprocessing or data cleaning, and either do not provide the 
raw data or lack appropriate metadata or provenance. The 
COVID-19 Twitter Chatter dataset [20] is a robust large-scale re-
pository of tweets that is well-maintained and frequently updated 
(over 50 versions released at the time of publication). Recent work 
utilizing this resource has shown great promise for tracking long-
term patient-reported symptoms [21] as well as highlighted men-
tions of drugs relevant to the treatment of COVID-19 [22]. While 
these are compelling clinical use cases, additional work is needed to 
fully understand what additional biomedical and clinical utility can 
be obtained from these data. 

This paper presents preliminary work achieved during the 2021 
Biomedical Linked Annotation Hackathon (BLAH 7) [23], which 
aimed to enhance and extend the COVID-19 Twitter Chatter data-
set [20] to include biomedical entities. By annotating symptoms 
and other relevant biomedical entities from COVID-19 tweets, we 
hope to improve the downstream clinical utility of these data and 
provide researchers with a means to clinically characterize personal-
ly-reported COVID-19 phenomena. We envision this work as the 
first step towards our larger goal of deriving mechanistic insights 
from specific types of entities within COVID-19 tweets by integrat-
ing these data with larger and more complex sources of biomedical 
knowledge, like PheKnowLator [24] and the KG-COVID-19 [25] 
knowledge graphs. The remainder of this paper is organized as fol-
lows: an overview of the methods and technologies utilized in this 
work, an overview of our findings, and a brief discussion of conclu-
sions and future work. 

Methods 

To prepare the dataset released in this work, we looked for named 
entity recognition (NER) pipelines to identify biomedical entities 
in text. We opted to evaluate: MedSpaCy [26], MedaCy [27], and 
ScispaCy [28], alongside a traditional text annotation pipeline from 
Social Media Mining Toolkit (SMMT), a product of a BLAH 6 
hackathon [29]. The main reason for selecting these text processing 
pipelines is the fact that they are all based on SpaCy [30], a widely 
adopted open-source library for Natural Language Processing 
(NLP) in Python, allowing our codebases to be streamlined, and 

the annotation output to be easily compared in our evaluation as 
well as ingested by other work utilizing similar pipelines. Several 
preprocessing steps like URL and emoji removal were performed 
on all tweets. 

Please note that the selected NER pipelines are usually tuned and 
developed to annotate specific types of clinical/scientific text, from 
either electronic health records, clinical notes, or scientific literature. 
The only general-purpose tagger is the SMMT, which does not per-
form any specialized tasks other than tagging or annotating text. 
This fact impacted their performance in Twitter social media data, 
and the following comparison should not be used to evaluate the 
systems’ performance on clinical data/scientific literature, but rather 
the need for appropriately tuned systems for social media data. 

Datasets 
As the source for this work, we used one of the largest COVID-19 
Twitter Chatter datasets available [20]. We used version 44 of the 
dataset [20], which contains 903,223,501 unique tweets. To im-
prove the quality and relevance of the annotations, we used the 
clean version of this dataset, which has all retweets removed. Leav-
ing us with a total of 226,582,903 unique tweets to annotate. From 
this subset, we selected only English tweets, as all the systems evalu-
ated were created to extract/annotate biomedical concepts in this 
language.  

For the evaluation of the annotations from each NER system and 
the SMMT tagger, we will use as a gold standard, a manually anno-
tated dataset created for symptoms, conditions, prescriptions, and 
measurement procedures identification in patients with long Covid 
phenotypes [21]. This dataset consists of 10,315 manually annotat-
ed tweets, by multiple clinicians. Currently, the dataset is not pub-
licly available but will be released at a later date. 

ScispaCy 
Developed by the Allen AI institute, the pipelines and models in this 
package have been tuned for use on scientific documents [28]. In 
our evaluation, we used the following model: en_core_sci_lg, which 
consists of ~785k vocabulary and 600k word vectors. Additionally, 
we used the EntityLinker component to annotate the Unified Medi-
cal Language System (UMLS) concepts. Since this pipeline provides 
more than one match per annotation, we only selected the first 
match to avoid duplicates. The code used can be found in [31]. 

MedaCy 
Developed by researchers at Virginia Commonwealth University, 
MedaCy is a text processing framework wrapper for spaCy. It sup-
ports extremely fast prototyping of highly predictive medical NLP 
models. For our evaluation, we used their provided medacy_model_
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clinical_notes model, with all other default settings. The code used 
can be found [31]. 

MedSpaCy 
Currently, in beta release, MedSpaCy was created as a toolkit to en-
able user-specific clinical NLP pipelines. In our evaluation, we 
wanted to use some of the out-of-the-box components instead of 
fine-tuning them for our Twitter annotation task. We used the en_
info_3700_i2b2_2012 model - trained on i2b2 data, and the Sec-
tionizer [32]. We initially tried to use the demo QuickUMLS entity 
linker, but ultimately opted not to do this as their demo only in-
cludes 100 concepts, and building it from scratch was outside of the 
scope of our task. The code used can be found in [31]. 

SMMT tagger 
As part of SMMT, the SpaCy-based tagger relies on a user-specified 
dictionary to annotate concepts on the provided text. This tagger 
does not perform any NER or section detection, but only simple 
string matching. Designed with simplicity and flexibility in mind, 
when using social media data, it is preferred to provide a concise 
dictionary with the desired terms for annotation, rather than using 
pre-trained models that may not generalize well to domain-specific 
tasks, or are computationally expensive. The dictionary used in this 
evaluation consists of a mix of SNOMED-CT [33], ICD 9/10 
[34], MeSH [35], and RxNorm [36] extracted from the Observa-
tional Health Data Sciences and Informatics (OHDSI) vocabulary. 
This dictionary is available as part of the paper’s code repository. 

Results 

Extraction performance 
In Table 1 we show the processing time and count of annotations 
produced by the evaluated systems on the gold standard dataset. 
Note that as expected, simple text annotation from the SMMT tag-
ger is the fastest, with MedaCy coming in second as its annotation 
model is small. The SMMT tagger dictionary produces plenty of 
annotations as it considers some of the common misspellings for 
COVID-19 (e.g., “fatigue” vs “fatige”) as well as related symptoms 
and drugs that have been curated in our previous work when ex-

tracting drug mentions in Twitter data [22].  
Due to the larger model utilized by ScispaCy, the processing time is 

nearly five-fold that of simple text annotation. However, this comes 
with the added benefit that abbreviations are nicely normalized to 
UMLS concepts, hence creating some annotations that any of the 
other systems will be unable to find. 

Overlap between systems on gold standard dataset 
To determine which system to use for the large-scale annotation of 
the Twitter COVID-19 chatter dataset, we evaluated all systems 
against the manually annotated gold-standard. Here, while we 
grouped the annotations into three categories: drugs, conditions/
symptoms, and measurements. We did not use the systems’ annota-
tion categories, but rather their annotated terms and spans. This was 
done to accommodate the custom entity categories that systems like 
MedSpaCy and MedaCy have in their default settings and the fact 
that we are using only the first UMLS concepts identified by Scispa-
Cy. Table 2 shows the annotation overlap analysis. 

We would like to stress again that MedSpaCy and MedaCy are at 
a disadvantage as their models are trained on considerably different 
data that does not work well with Twitter data. ScispaCy, however, 
performs fairly decently (in comparison) as the larger models pro-
vide capture relevant annotations when the tweet’s text is clean and 
well-formed. It is out of the scope of this paper to properly tune 
these systems to ensure that they perform well with Twitter data, 
but it is certainly an interesting avenue for future research. 

Extraction evaluation on a limited set 
While it is clear that regular text annotation performed the best in 
replicating the annotations that our clinicians made, we still anno-
tated all 226,582,903 dataset tweets and evaluated the overlap of 
annotations made by the different systems. Table 3 shows the com-
parison between counts of produced annotations, processing time, 
and overlaps in annotations between the systems. 

Conclusion 

In this work we release a biomedically oriented automatically anno-

Table 1. Extraction evaluation of proposed systems

Tweets Annotations produced Processing time (s)
SMMT Tagger 10,315 92,835 10,815.24
MedSpaCy 10,315 51,575 33,746.40
MedaCy 10,315 61,890 21,896.63
ScispaCy 10,315 72,205 49,168.85

SMMT, Social Media Mining Toolkit.

Table 2. Annotation overlap analysis between gold standard dataset 
and evaluated systems

Drugs (%) Conditions/
Symptoms (%) Measurements (%) Average (%)

SMMT Tagger 69.31 71.91 39.83 60.35
MedSpaCy 19.98 13.49 7.45 13.64
MedaCy 47.04 27.14 12.56 28.91
ScispaCy 59.71 44.65 26.98 43.78

SMMT, Social Media Mining Toolkit.
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tated dataset of COVID-19 chatter tweets. We demonstrate that 
while there are existing SpaCy-based systems for NER on clinical 
and scientific documents, they do not generalize well when used on 
non-clinical sources of data like tweets. However, we use this evalu-
ation to justify the usage of a simple text tagger (SMMT) to pro-
duce annotations on a large set of tweets, based on its robustness 
when evaluated on a gold-standard manually curated dataset. The 
resulting dataset and biomedical annotations is the first and largest 
of its kind making it a substantial contribution with respect to using 
large-scale Twitter data for biomedical research. We have also add-
ed components for these types of tasks to SMMT, improving the 
usability of the resource. 

As for future work, the release of this dataset will facilitate contin-
ued development of fine-tuned resources for mining social media 
data for biomedical and clinical applications. Recent research has 
shown social media data to be a valuable source of patient-reported 
information that is not available in similar granularity in other more 
traditional data sources. 
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