
J. Appl. Math. & Informatics Vol. 39(2021), No. 3 - 4, pp. 321 - 326
https://doi.org/10.14317/jami.2021.321

ON A NEW APPLICATION OF QUASI POWER INCREASING
SEQUENCES
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Abstract. In the present paper, a theorem on φ − | C,α; δ |k
summability of an infinite series is obtained by using a quasi β-power in-
creasing sequence.
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1. Introduction

A positive sequence (bn) is said to be almost increasing if there exist a
positive increasing sequence (cn) and two positive constants K and M such
that Kcn ≤ bn ≤ Mcn (see [1]). A positive sequence (γn) is said to be quasi
β-power increasing sequence if there exists a constant K = K(β, γ) ≥ 1 such
that Knβγn ≥ mβγm holds for all n ≥ m ≥ 1 (see [13]). Every almost increasing
sequence is a quasi β-power increasing sequence for any non-negative β, but the
converse need not be true as can be seen by taking the example, say γn = n−β

for β > 0. A sequence (λn) is said to be of bounded variation, denoted by
(λn) ∈ BV , if

∑∞
n=1 |∆λn| =

∑∞
n=1 |λn − λn+1| < ∞. Let

∑
an be an infinite

series with partial sums (sn). By uαn and tαn, we denote the nth Cesàro means of
order α, with α > −1, of the sequence (sn) and (nan), respectively, that is (see
[9])

uαn =
1

Aα
n

n∑
v=0

Aα−1
n−vsv

tαn =
1

Aα
n

n∑
v=1

Aα−1
n−vvav (1)
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where

Aα
n = O(nα), Aα

0 = 1 and Aα
−n = 0 for n > 0.

Let (ωα
n) be a sequence defined by (see [21])

ωα
n =

{
|tαn| , α = 1

max1≤v≤n |tαv | , 0 < α < 1
(2)

Let (φn) be a sequence of positive numbers. The series
∑
an is said to be

summable φ− | C,α; δ |k, k ≥ 1, α > −1, δ ≥ 0, if (see [23])
∞∑

n=1

φδk+k−1
n | uαn − uαn−1 |k<∞.

Because of the equality tαn = n
(
uαn − uαn−1

)
(see [12]), the definition of the

φ− | C,α; δ |k summability can be given as
∞∑

n=1

φδk+k−1
n n−k | tαn |k<∞.

On taking φn = n in above definition, we get the definition of | C,α; δ |k
summability (see [11]). If we take φn = n and δ = 0, then φ − | C,α; δ |k
summability is the same as | C,α |k summability (see [10]). Also, if we take
φn = n, δ = 0 and α = 1, then φ − | C,α; δ |k summability is the same as
| C, 1 |k summability (see [10]).

The following theorem on | C,α |k summability has been proved by Bor and
Srivastava (see [7]).

Theorem 1.1. Let (Xn) be an almost increasing sequence and let there be
sequences (µn) and (λn) such that

| ∆λn |≤ µn, (3)

µn → 0 as n→∞, (4)

∞∑
n=1

n | ∆µn | Xn <∞, (5)

| λn | Xn = O(1) as n→∞. (6)

If the sequence (ωα
n) defined by (2) satisfies the condition

m∑
n=1

1

n
(ωα

n)
k = O(Xm) as m→∞, (7)

then the series
∑
anλn is summable | C,α |k, k ≥ 1 and 0 < α ≤ 1.
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2. Main Result

One can see some papers on generalized Cesàro summability ([3]-[6], [14]-[20],
[22]). The aim of this paper is to obtain a theorem which generalizes Theorem
1.1 by using a quasi β-power increasing sequence in the following form.

Theorem 2.1. Let (λn) ∈ BV and (Xn) be a quasi β-power increasing sequence.
Let the conditions (3)-(6) be satisfied. If there is an ϵ > 0 such that the sequence
(nϵ−kφδk+k−1

n ) is non-increasing and the sequence (ωα
n) defined by (2) satisfies

the condition
m∑

n=1

φδk+k−1
n n−k(ωα

n)
k = O(Xm) as m→∞, (8)

then the series
∑
anλn is summable φ − | C,α; δ |k, k ≥ 1, δ ≥ 0, 0 < α ≤ 1

and αk + ϵ > 1.

3. Lemmas

To prove Theorem 2.1, we need the lemmas given below.

Lemma 3.1. [8] If 0 < α ≤ 1 and 1 ≤ v ≤ n, then∣∣∣∣∣
v∑

p=0

Aα−1
n−pap

∣∣∣∣∣ ≤ max
1≤m≤v

∣∣∣∣∣
m∑

p=0

Aα−1
m−pap

∣∣∣∣∣ . (9)

Lemma 3.2. [13] Under the conditions on (Xn), (µn) and (λn) as taken in the
statement of Theorem 2.1, we have

nµnXn = O(1) as n→∞ (10)

∞∑
n=1

µnXn <∞. (11)

Proof of Theorem 2.1. Let 0 < α ≤ 1. Let (Mα
n ) be the nth (C,α) mean of the

sequence (nanλn). So, we have

Mα
n =

1

Aα
n

n∑
v=1

Aα−1
n−vvavλv

by (1). Applying Abel’s transformation, we get

Mα
n =

1

Aα
n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−ppap +

λn
Aα

n

n∑
v=1

Aα−1
n−vvav.
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Here, using Lemma 3.1, we have

|Mα
n | ≤

1

Aα
n

n−1∑
v=1

| ∆λv |

∣∣∣∣∣
v∑

p=1

Aα−1
n−ppap

∣∣∣∣∣+ | λn |Aα
n

∣∣∣∣∣
n∑

v=1

Aα−1
n−vvav

∣∣∣∣∣
≤ 1

Aα
n

n−1∑
v=1

Aα
vω

α
v | ∆λv | + | λn | ωα

n

= Mα
n,1 +Mα

n,2.

To complete the proof, we need to show
∞∑

n=1

φδk+k−1
n n−k |Mα

n,r |k<∞, for r = 1, 2.

First, applying Hölder’s inequality with indices k and k′, where k > 1 and
1
k + 1

k′ = 1, we get
m+1∑
n=2

φδk+k−1
n n−k |Mα

n,1 |k

=

m+1∑
n=2

φδk+k−1
n n−k

∣∣∣∣∣ 1

Aα
n

n−1∑
v=1

Aα
vω

α
v | ∆λv |

∣∣∣∣∣
k

≤
m+1∑
n=2

φδk+k−1
n n−k(Aα

n)
−k

n−1∑
v=1

(Aα
v )

k(ωα
v )

k | ∆λv |

{
n−1∑
v=1

| ∆λv |

}k−1

.

Here, using the fact that (λn) ∈ BV , we get
∑
| ∆λv |<∞. Also, by using (3),

we have
m+1∑
n=2

φδk+k−1
n n−k |Mα

n,1 |k = O(1)

m∑
v=1

vαk(ωα
v )

kµv

m+1∑
n=v+1

φδk+k−1
n nϵ−k

nαk+ϵ
.

Then, we get
m+1∑
n=2

φδk+k−1
n n−k |Mα

n,1 |k

= O(1)

m∑
v=1

vαk(ωα
v )

kµvφ
δk+k−1
v vϵ−k

∫ ∞

v

dx

xαk+ϵ

= O(1)

m−1∑
v=1

∆(vµv)

v∑
r=1

φδk+k−1
r r−k(ωα

r )
k +O(1)mµm

m∑
v=1

φδk+k−1
v v−k(ωα

v )
k

= O(1)

m−1∑
v=1

v|∆µv|Xv +O(1)

m−1∑
v=1

µv+1Xv+1 +O(1)mµmXm

= O(1) as m→∞,



On a New Application of Quasi Power Increasing Sequences 325

by Abel’s transformation and the conditions (8), (5), (11) and (10).

For r = 2,
m∑

n=1

φδk+k−1
n n−k |Mα

n,2 |k =

m∑
n=1

φδk+k−1
n n−k |λn|k (ωα

n)
k.

Since |λn|Xn = O(1) by (6), we write |λn|k−1
= O(1). So, we get

m∑
n=1

φδk+k−1
n n−k |Mα

n,2 |k =

m∑
n=1

φδk+k−1
n n−k |λn| (ωα

n)
k.

Then applying Abel’s transformation and using the conditions (8), (3), (11) and
(6), we get

m∑
n=1

φδk+k−1
n n−k |Mα

n,2 |k

= O(1)

m−1∑
n=1

∆ |λn|
n∑

v=1

φδk+k−1
v v−k(ωα

v )
k +O(1) |λm|

m∑
v=1

φδk+k−1
v v−k(ωα

v )
k

= O(1)

m−1∑
n=1

|∆λn|Xn +O(1) |λm|Xm

= O(1)

m−1∑
n=1

µnXn +O(1) |λm|Xm

= O(1) as m→∞.

So the proof of Theorem 2.1 is completed. �

If we take (Xn) as a positive non-decreasing sequence in Theorem 2.1, then
we get a known result (see [23]). Also, if we take (Xn) as an almost increasing
sequence, φn = n, δ = 0 and ϵ = 1 in Theorem 2.1, then we get Theorem 1.1.
Furthermore, if we take (Xn) as a positive non-decreasing sequence, φn = n,
δ = 0, α = 1 and ϵ = 1 in Theorem 2.1, then we get a known theorem on |C, 1|k
summability (see [2]).
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1. N.K. Bari and S.B. Stečkin, Best approximations and differential proprerties of two

conjugate functions, Trudy Moskov. Mat. Obšč. 5 (1956), 483-522.
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