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THE CONNECTIVITY AND THE MODIFIED SECOND
MULTIPLICATIVE ZAGREB INDEX OF GRAPHS†

JIANWEI DU∗, XIAOLING SUN

Abstract. Zagreb indices and their modified versions of a molecular graph
are important descriptors which can be used to characterize the structural
properties of organic molecules from different aspects. In this work, we
investigate some properties of the modified second multiplicative Zagreb
index of graphs with given connectivity. In particular, we obtain the max-
imum values of the modified second multiplicative Zagreb index with fixed
number of cut edges, or cut vertices, or edge connectivity, or vertex connec-
tivity of graphs. Furthermore, we characterize the corresponding extremal
graphs.
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1. Introduction

Topological indices are mathematical descriptors reflecting some structural
characteristics of organic molecules on the molecular graph, and they play an
important role in chemistry, pharmacology, etc. (see [12,13,18]). The famous
Zagreb indices, first introduced by Gutman and Trinajstić [14], are used to ex-
amine the structure dependence of total π-electron energy on molecular orbital.
The first Zagreb index M1 and the second Zagreb index M2 of a graph G are
defined as:

M1(G) =
∑

v∈V (G)

dG(v)
2, M2(G) =

∑
uv∈E(G)

dG(u)dG(v),

where dG(u) is the degree of vertex u.
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These two classical topological indices (M1 andM2) and their variations have
been applied in studying heterosystems, ZE-isomerism, chirality and complexity
of molecule, etc. Todeschini et al. [19] presented a version of Zagreb indices
which nowadays are called multiplicative Zagreb indices, and they are expressed
as:

Π1(G) =
∏

v∈V (G)

dG(v)
2, Π2(G) =

∏
uv∈E(G)

dG(u)dG(v).

Recently, Gutman, Eliasi and Iranmanesh, respectively [8, 11] introduced the
modified first multiplicative Zagreb index (also called the multiplicative sum
Zagreb index) of a graph defined as

Π∗
1(G) =

∏
uv∈E(G)

(dG(u) + dG(v)).

Relevant results on the modified first multiplicative Zagreb index can be found
in [2,5,7,8,11,22].

In 2016, Basavanagoud et al. [3] introduced another multiplicative version
called the modified second multiplicative Zagreb index (denoted by Π∗

2) and
defined as

Π∗
2(G) =

∏
uv∈E(G)

(dG(u) + dG(v))
(dG(u)+dG(v)).

Basavanagoud et al. [3] studied several derived graphs. Wang et al. [20] de-
termined the maximal and minimal modified multiplicative Zagreb indices of
graphs with vertex connectivity or edge connectivity at most k.

In this work, we only deal with simple connected graphs. Let G = (V (G),
E(G)) be the graph having vertex set V (G) and edge set E(G). Given a graph
G, we use G − x or G − xy to denote the graph that arises from G by deleting
the vertex x ∈ V (G) or the edge xy ∈ E(G). Similarly, G + xy is a graph that
arises from G by adding an edge xy /∈ E(G), where x, y ∈ V (G). Let E′ ⊆ E(G),
we use G − E′ to denote the subgraph of G obtained by deleting the edges of
E′. For X ⊆ V (G), G − X denotes the subgraph of G obtained by deleting
the vertices of X and the edges incident with them. A block of a graph is a
maximum connected subgraph with no cut vertex. If a block has at most one
cut vertex in the graph as a whole, we call it an endblock. A clique of a graph
G is a subset W ⊂ V (G) such that G[W ] is complete. As usual, we use Pn, Kn

and Sn to denote the paths, the complete graphs and the stars on n vertices,
respectively.

Let Pr = x0x1 · · ·xr (r ≥ 1) be a path of graph G with dG(x1) = · · · =
dG(xr−1) = 2 (unless r = 1). If dG(x0), dG(xr) ≥ 3, then Pr is called an internal
path of G; if dG(x0) ≥ 3, dG(xr) = 1, then Pr is called a pendant path of G.
G1∪G2 denotes the vertex-disjoint union of the graphs G1 and G2, and G1∨G2

denotes the graph arising from G1∪G2 by adding all possible edges between the
vertices of G1 and the vertices of G2. We denote by γ(G) = |E(G)|− |V (G)|+1
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the cyclomatic number of graph G. The k cyclic graph is the graph whose
cyclomatic number is k. For γ(G) = 0, G is a tree.

&%
'$r rr

r#
##

   
c
cc

Kn−k

Kk
n

v1
v2

vk

... &%
'$rr

r
r r
r

!!!

   

aaa

pppKn−k

G1
n,k

u1

u2

uk

&%
'$r rrr r

r
r

r
r
r

r r
r

aa

aa!! aa

pppppp Kn−k

G2
n,k

u1

u2

u2k−n

u2k−n+1

un−k

&%
'$rrr r

r rp p p��
!!

��
!!
l2

rr rrr rr
r
rppp  

`̀
  

`̀

  

`̀
l3ppppppr

rr
rr

r
r
r   

`̀`̀

  ppp
pppppplm

u1un−k

Kn−k

G3
n,k

Figure 1. Kk
n, G1

n,k, G2
n,k and G3

n,k.
LetKk

n (as shown in Figure 1) be the graph obtained by identifying one vertex
of Kn−k with the central vertex of star Sk+1. Let G1

n,k (as shown in Figure 1)
be the graph arising from Kn−k by attaching at most one pendant edge to each
of its vertices, where 0 < k ≤ n

2 . Let G2
n,k (as shown in Figure 1) be the graph

arising from Kn−k by attaching one pendant path of length 2 to 2k− n vertices
(u1, · · · , u2k−n) of Kn−k, and attaching one pendant edge to the other 2n− 3k
vertices (u2k−n+1, · · · , un−k) of Kn−k, where n

2 < k ≤ 2n
3 . Let G3

n,k (as shown
in Figure 1) be the graph obtained from Kn−k by attaching exactly one pendant
path of length greater than 1 to each vertex of Kn−k, where 2n

3 < k ≤ n − 3,
l2 + l3 + · · · + lm = n − k and 2l2 + 3l3 + · · · +mlm = k (lt is the number of
paths with length t, t = 2, 3, · · · ,m). We can see [4] for other terminologies and
notations.

There are many papers on the topological indices and the connectivity of
graphs, such as [1,6,7,9,10,15-17,20,21,23]. Inspired by this, we go on studying
the mathematical properties of the connectivity and the modified multiplicative
Zagreb indices of graphs. The authors of this paper obtained some results on
the connectivity and the modified first multiplicative Zagreb index of graphs
[7]. The values of the modified second multiplicative Zagreb index are usually
more difficult to determine. In this work, we present the maximum values of the
modified second multiplicative Zagreb index with fixed number of cut edges, or
cut vertices, or edge connectivity, or vertex connectivity of a graph. Furthermore,
we characterize the corresponding extremal graphs.

2. Preliminaries

By the definition of Π∗
2, the following Lemma 2.1 is immediate.

Lemma 2.1. Let G = (V (G), E(G)) be a simple connected graph. Then
(i) For each e ∈ E(G), Π∗

2(G) > Π∗
2(G− e);
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(ii) For each e = uv /∈ E(G), u, v ∈ V (G), Π∗
2(G) < Π∗

2(G+ e).

Lemma 2.2. Let l(x) = (x+a)x+a

xx , where x ≥ 1 and a ≥ 1. Then l(x) is
increasing for x ≥ 1.

Proof. Let L(x) = ln l(x) = (x+ a) ln(x+ a)− x lnx. Then L′(x) = ln x+a
x > 0.

Thus l(x) is increasing for x ≥ 1. �

Lemma 2.3. Let n1, n2, s be positive integers, where n2 ≥ n1 ≥ 2 and s ≥ 1.
Then

(2n1 + 2s− 4)(2n1+2s−4)(n1−1
2 )(2n2 + 2s)(2n2+2s)(n2+1

2 )

(2n1 + 2s− 2)(2n1+2s−2)(n1
2 )(2n2 + 2s− 2)(2n2+2s−2)(n2

2 )
> 1.

Proof. Let f(x) = (x2+x)(2x+2s) ln(2x+2s)−(x2−x)(2x+2s−2) ln(2x+2s−2)
be a real function in x, where x ≥ 1. Then

f ′(x) =2[(2x+1)(x+s)+x2+x] ln(2x+2s)

−2[(2x−1)(x+s−1)+x2−x] ln(2x+2s−2)+4x.

Since (2x+ 1)(x+ s) + x2 + x > (2x− 1)(x+ s− 1) + x2 − x, then

f ′(x) >2[(2x− 1)(x+ s− 1) + x2 − x] ln(2x+ 2s)

−2[(2x− 1)(x+ s− 1) + x2 − x] ln(2x+ 2s− 2)

=2[(2x− 1)(x+ s− 1) + x2 − x] ln (2x+ 2s)

(2x+ 2s− 2)
> 0.

Thus f(n2) > f(n1 − 1), that is,

(n22 + n2)(2n2 + 2s) ln(2n2 + 2s)− (n22 − n2)(2n2 + 2s− 2) ln(2n2 + 2s− 2)

> (n21 − n1)(2n1 + 2s− 2) ln(2n1 + 2s− 2)

− ((n1 − 1)2 − (n1 − 1))(2n1 + 2s− 4) ln(2n1 + 2s− 4)

=⇒ (n1−1)(n1−2)
2

ln(2n1+2s−4)(2n1+2s−4)+
(n2+1)n2

2
ln(2n2+2s)(2n2+2s)

>
n1(n1−1)

2
ln(2n1+2s−2)(2n1+2s−2)+

n2(n2−1)
2

ln(2n2+2s−2)(2n2+2s−2)

=⇒ ln

(
(2n1 + 2s− 4)(2n1+2s−4)

(n1−1)(n1−2)
2 (2n2 + 2s)(2n2+2s)

(n2+1)n2
2

)
> ln

(
(2n1 + 2s− 2)(2n1+2s−2)

n1(n1−1)
2 (2n2 + 2s− 2)(2n2+2s−2)

n2(n2−1)
2

)
=⇒(2n1 + 2s− 4)(2n1+2s−4)

(n1−1)(n1−2)
2 (2n2 + 2s)(2n2+2s)

(n2+1)n2
2

> (2n1 + 2s− 2)(2n1+2s−2)
n1(n1−1)

2 (2n2 + 2s− 2)(2n2+2s−2)
n2(n2−1)

2 .

This finishes the proof. �
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Lemma 2.4. Let n, a, n1, n2 be positive integers, where n2 ≥ n1 ≥ 2, n1+n2 < n
and a ≥ n− 1. Then

(a+ n1 − 1)(a+n1−1)(n1−1)(a+ n2 + 1)(a+n2+1)(n2+1)

(a+ n1)(a+n1)n1(a+ n2)(a+n2)n2
> 1.

Proof. Let g(x) = x(a+ x) ln(a+ x)− (x− 1)(a+ x− 1) ln(a+ x− 1) be a real
function in x, where a ≥ n− 1, x ≥ 2. Then

g′(x) = 1 + (2x+ a) ln(a+ x)− (2x+ a− 2) ln(a+ x− 1)

> (2x+ a− 2) ln(a+ x)− (2x+ a− 2) ln(a+ x− 1)

= (2x+ a− 2) ln
a+ x

a+ x− 1
> 0.

Thus g(n2 + 1) > g(n1), that is,
(n2 + 1)(a+ n2 + 1) ln(a+ n2 + 1)− n2(a+ n2) ln(a+ n2)

> n1(a+ n1) ln(a+ n1)− (n1 − 1)(a+ n1 − 1) ln(a+ n1 − 1)

=⇒ ln

(
(a+ n2 + 1)(a+n2+1)(n2+1)(a+ n1 − 1)(a+n1−1)(n1−1)

)
> ln

(
(a+ n1)

(a+n1)n1(a+ n2)
(a+n2)n2

)
=⇒(a+ n2 + 1)(a+n2+1)(n2+1)(a+ n1 − 1)(a+n1−1)(n1−1)

> (a+ n1)
(a+n1)n1(a+ n2)

(a+n2)n2 .

This completes the proof. �

3. Modified second multiplicative Zagreb index of graphs with fixed
number of cut edges

We use GE(n, k) to denote the n-vertex graphs with k cut edges.
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Figure 2. Transformation A1.

Transformation A1: Suppose G1 and G2 are graphs with n1 ≥ 3 and n2 ≥ 2
vertices, respectively, where G1 is 2-edge connected. Suppose G is a graph, as
shown in Figure 2, obtained from G1 and G2 by adding an edge from a vertex
x ∈ V (G1) to a vertex y ∈ V (G2). Then xy is a non-pendant cut edge in G.
Let G′ be the graph obtained by identifying x of G1 with y of G2 and adding a
pendant edge to x(y), as shown in Figure 2.

Lemma 3.1. Suppose G′ and G are graphs in Figure 2. Then Π∗
2(G

′) > Π∗
2(G).
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Proof. DenoteNG1
(x) = {x1, x2, · · · , xd1

} andNG2
(y) = {y1, y2, · · · , yd2

}. Since
the function (x+a)x+a (x ≥ 1, a ≥ 1) is increasing for x, by the definition of Π∗

2

, it follows that

Π∗
2(G

′)

Π∗
2(G)

=

(d1+d2+2)(d1+d2+2)
( d1∏

i=1

(dG1
(xi)+d1+d2+1)(dG1

(xi)+d1+d2+1)
)

(d1 + d2 + 2)(d1+d2+2)
( d1∏

i=1

(dG1(xi) + d1 + 1)(dG1
(xi)+d1+1)

)

·

d2∏
j=1

(dG2
(yj)+d1+d2+1)(dG2

(yj)+d1+d2+1)

d2∏
j=1

(dG2
(yj) + d2 + 1)(dG2

(yj)+d2+1)

> 1.

The proof is completed. �
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Figure 3. Transformation A2.

Transformation A2: Suppose G is a graph as shown in Figure 3, where xy is
a non-pendant cut edge of G, G1 is 2-edge connected, dG(x) ≥ 2, NG(y)/{x} =
{y1, y2, · · · , yr} (y1, y2, · · · , yr are pendant vertices). G′ = G−{yy1, yy2, · · · , yyr}
+{xy1, xy2, · · · , xyr}, as shown in Figure 3.

Lemma 3.2. Suppose G and G′ are graphs in Figure 3. Then Π∗
2(G

′) > Π∗
2(G).

Proof. Denote NG1(x) = {x1, x2, · · · , xs}. By the definition of Π∗
2, it follows

that

Π∗
2(G

′)

Π∗
2(G)

=

(r + s+ 2)(r+s+2)
( s∏

i=1

(dG1
(xi)+r+s+1)(dG1

(xi)+r+s+1)
)

(r + s+ 2)(r+s+2)
( s∏

i=1

(dG1
(xi) + s+ 1)(dG1

(xi)+s+1)
)

·

r∏
j=1

(s+r+2)(s+r+2)

r∏
j=1

(r + 2)(r+2)

>1.

This finishes the proof. �
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Figure 4. Transformation A3.

Transformation A3: Let P = ux1x2 · · ·xrv (r ≥ 2) be an internal path in
G, i.e., dG(xi) = 2 for i = 1, 2, · · · , r, dG(u) ≥ 2 and dG(v) ≥ 2. Let G′ =
G − {x2x3, x3x4, · · · , xr−1xr, xrv} + {x1x3, x1x4, · · · , x1xr, x1v}, as shown in
Figure 4.

Lemma 3.3. Suppose G and G′ are graphs in Figure 4. Then Π∗
2(G

′) > Π∗
2(G).

Proof. Denote dG(u) = s and dG(v) = t . By the definition of Π∗
2, it follows that

Π∗
2(G

′)

Π∗
2(G)

=

(r + s+ 1)(r+s+1)(r + t+ 1)(r+t+1)
( r∏

i=2

(r + 2)(r+2)
)

(s+ 2)(s+2)(t+ 2)(t+2)
( r∏

i=2

44
) > 1.

This finishes the proof. �

GE(n, n− 1) is a tree, we give a theorem below.

Theorem 3.4. Suppose G ∈ GE(n, n− 1), i.e., G is a tree. Then

Π∗
2(G) ≤ nn(n−1)

with equality if and only if G ∼= Sn.

Proof. Repeating Transformation A2, any tree T of size s attached to graph G
can be changed into a star Ss+1. And the Π∗

2(G) increases by Lemma 3.2. Then
G with maxium Π∗

2 must be a caterpillar. Considering Transformations A1 and
A3, from Lemmas 3.1 and 3.3, we conclude that any caterpillar can be changed
into star Sn with a larger Π∗

2. Thus the result follows immediately. �

Let G ∈ GE(n, k). If γ(G) ≥ 1, then k ≤ n − 3. Thus, in what follows, we
discuss the case of 1 ≤ k ≤ n− 3 when G ∈ GE(n, k).
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Remark 3.1. For any G ∈ GE(n, k), if necessary, by repeating the graph
transformation A1 or A2, any cut edges in G can changed into pendant edges.
That is, if necessary, by a series of transformation A1 or A2, we can change G to
G∗ (as depicted in Figure 5), where G1, G2, · · · , Gr are 2-edge connected graphs.
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By Lemma 3.1, 3.2 and Remark 3.1, the following Lemma 3.5 is obtained
immediately.

Lemma 3.5. Suppose G ∈ GE(n, k). Then Π∗
2(G) ≤ Π∗

2(G
∗), where G∗ are

graphs as depicted in Figure 5.

Let Kni
(1 ≤ i ≤ r) be a clique which is obtained by adding edges in Gi

(1 ≤ i ≤ r) and changing Gi into complete subgraphs, where G1, G2, · · · , Gr in
G∗ are 2-edge connected graphs. By Lemma 2.1, we get the following Lemma
3.6.

Lemma 3.6. Suppose H is the graph as depicted in Figure 6, where Kni
(1 ≤

i ≤ r) are cliques as above. Then Π∗
2(H) ≥ Π∗

2(G
∗).
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Transformation A4: Suppose G is a graph as depicted in Figure 7, V (Kp) =
{x, y, z1, · · · , zp−2}, each vertex on Kp either is of degree p − 1 or has some
pendant edges attached, where p ≥ 3, l1, · · · , lp−2 ≥ 0. x1, x2, · · · , xt and
y1, y2, · · · , ys are pendant vertices adjacent to x and y, respectively, where
t, s ≥ 1. Let G′ = G− {xx1, xx2, · · · , xxt}+ {yx1, yx2, · · · , yxt}, as depicted in
Figure 7.

Lemma 3.7. Suppose G′ and G are graphs in Figure 7. Then Π∗
2(G

′) > Π∗
2(G).
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Proof. It is evident that dG′(x) = p−1, dG(x) = p−1+ t, dG′(y) = p−1+ t+s,
dG(y) = p− 1 + s. By the definition of Π∗

2 and Lemma 2.2, we find that

Π∗
2(G

′)

Π∗
2(G)

=
(2p− 2 + t+ s)(2p−2+t+s)(p+ t+ s)(p+t+s)(t+s)

(2p− 2 + t+ s)(2p−2+t+s)(p+ t)(p+t)t(p+ s)(p+s)s

·

p−2∏
i=1

(
(dG(zi)+p−1)(dG(zi)+p−1)(dG(zi)+p−1+t+s)(dG(zi)+p−1+t+s)

)
p−2∏
i=1

(
(dG(zi)+p−1+t)(dG(zi)+p−1+t)(dG(zi)+p−1+s)(dG(zi)+p−1+s)

)
=
( (p+ t+ s)(p+t+s)

(p+ t)(p+t)

)t( (p+ t+ s)(p+t+s)

(p+ s)(p+s)

)s
·
p−2∏
i=1

(dG(zi)+p−1+t+s)(dG(zi)+p−1+t+s)

((dG(zi)+p−1+s)(dG(zi)+p−1+s)

(dG(zi)+p−1+t)(dG(zi)+p−1+t)

(dG(zi)+p−1)(dG(zi)+p−1)

> 1.

The proof is completed. �

Theorem 3.8. Suppose G ∈ GE(n, k), where 1 ≤ k ≤ n− 3. Then

Π∗
2(G) ≤ nnk(2n− k − 2)(2n−k−2)(n−k−1)(2n− 2k − 2)(2n−2k−2)(n−k−1

2 )

with equality if and only if G ∼= Kk
n.

Proof. Assume that G ∈ GE(n, k) has the maximum Π∗
2(G). By Lemma 3.5

and 3.6, it follows that Π∗
2(G) ≤ Π∗

2(H).
Next, we prove that r = 1. By contradiction. If r ≥ 2, suppose without loss

of generality that there exists an edge e = xy /∈ E(G), x ∈ V (Kni), y ∈ V (Knj ),
1 ≤ i < j ≤ r, and x, y is not the common vertex of Kni

and Knj
. By Lemma

2.1, it can be seen that Π∗
2(G + e) > Π∗

2(G), a contradiction. So r = 1. Thus
G is a graph obtained from Kn−k by attaching some pendant edges to some
vertices of Kn−k (the number of all pendant edges of G is k). By Lemma 3.7,
G ∼= Kk

n. �

4. Modified second multiplicative Zagreb index of graphs with fixed
number of cut vertices

We use GV (n, k) to denote the n-vertex graphs with k cut vertices. Since
GV (n, n − 2) is a path, thus, in this section, we always discuss the case of
1 ≤ k ≤ n− 3 when G ∈ GV (n, k).
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Transformation B1: Suppose G is a graph as depicted in Figure 8, Kp (p ≥ 2)
and Kq (q ≥ 3) are two cliques of G, where Kq is an endblock. V (Kp) and
V (Kq) have one cut vertex, say u, in common. V (Kp) = {u1, u2, · · · , up−1, u},
V (Kq) = {v1, v2, · · · , vq−1, u}. Gi (1 ≤ i ≤ p−1) is the subgraph attached to ui
(1 ≤ i ≤ p−1) (dG(u1) ≥ 2 when p = 2). Let G′ = G−{v1v2, v1v3, · · · , v1vq−1}+
{u1v2, u1v3, · · · , u1vq−1}+ · · ·+ {up−1v2, up−1v3, · · · , up−1vq−1}, as depicted in
Figure 8.

Lemma 4.1. Suppose G′ and G are graphs in Figure 8. Then Π∗
2(G

′) > Π∗
2(G).

Proof. Observe that dG(u) = dG′(u) = p + q − 2, dG(v1) = q − 1, dG′(v1) = 1,
dG′(ui) = dG(ui)+q−2 (i = 1, 2, · · · , p−1), dG′(vj) = p+q−3 (j = 2, 3, · · · , q−
1). For x ∈ NGi(ui), dG′(ui)+dG′(x) = dG(ui)+dG(x)+q−2 > dG(ui)+dG(x),
i = 1, 2, · · · , p − 1. Then (dG′ (ui)+dG′ (x))

(d
G′ (ui)+d

G′ (x))

(dG(ui)+dG(x))(dG(ui)+dG(x)) > 1, where x ∈ NGi
(ui),

i = 1, 2, · · · , p− 1.
If p = 2, dG(u1) ≥ 2, by the definition of Π∗

2 and Lemma 2.2, it follows that
Π∗

2(G
′)

Π∗
2(G)

=
(dG′(u) + dG′(v1))

(dG′ (u)+dG′ (v1))(dG′(u) + dG′(u1))
(dG′ (u)+dG′ (u1))

(dG(u) + dG(v1))(dG(u)+dG(v1))(dG(u) + dG(u1))(dG(u)+dG(u1))

·

q−1∏
i=2

(dG′(u1)+dG′(vi))
(dG′(u1)+dG′(vi))

q−1∏
i=2

(dG′(u)+dG′(vi))
(dG′(u)+dG′(vi))

q−1∏
i=2

(dG(v1)+dG(vi))(dG(v1)+dG(vi))
q−1∏
i=2

(dG(u)+dG(vi))(dG(u)+dG(vi))

·

∏
x∈NG1

(u1)

(dG′(u1) + dG′(x))(dG′ (u1)+dG′ (x))

∏
x∈NG1

(u1)

(dG(u1) + dG(x))(dG(u1)+dG(x))

>
(q+1)(q+1)(dG(u1)+2q−2)(dG(u1)+2q−2)(dG(u1)+2q−3)(dG(u1)+2q−3)(q−2)

(2q−1)(2q−1)(dG(u1)+q)(dG(u1)+q)(2q−2)(2q−2)(q−2)

=

(dG(u1)+2q−2)(dG(u1)+2q−2)

(dG(u1)+q)(dG(u1)+q)

(2q−1)(2q−1)

(q+1)(q+1)

·
( (dG(u1) + 2q − 3)(dG(u1)+2q−3)

(2q − 2)(2q−2)

)q−2

> 1.

If p ≥ 3, we have

Π∗
2(G

′)

Π∗
2(G)

=

(dG′(u)+dG′(v1))
(dG′ (u)+dG′ (v1))

p−1∏
i=1

(dG′(u)+dG′(ui))
(dG′ (u)+dG′ (ui))

(dG(u) + dG(v1))(dG(u)+dG(v1))
p−1∏
i=1

(dG(u) + dG(ui))(dG(u)+dG(ui))

·

∏
1≤i<j≤p−1

(dG′(ui)+dG′(uj))
(dG′ (ui)+dG′ (uj))∏

1≤i<j≤p−1

(dG(ui) + dG(uj))(dG(ui)+dG(uj))
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·

q−1∏
i=2

(dG′(u)+dG′(vi))
(dG′(u)+dG′(vi))

∏
2≤i<j≤q−1

(dG′(vi)+dG′(vj))
(dG′(vi)+dG′(vj))

q−1∏
i=2

(dG(u) + dG(vi))(dG(u)+dG(vi))
∏

2≤i<j≤q−1

(dG(vi) + dG(vj))(dG(vi)+dG(vj))

·

p−1∏
i=1

q−1∏
j=2

(dG′(ui)+dG′(vj))
(dG′(ui)+dG′(vj))

p−1∏
i=1

∏
x∈NGi

(ui)

(dG′(ui)+dG′(x))(dG′(ui)+dG′(x))

q−1∏
i=2

(dG(v1)+dG(vi))(dG(v1)+dG(vi))
p−1∏
i=1

∏
x∈NGi

(ui)

(dG(ui)+dG(x))(dG(ui)+dG(x))

≥
(p+q−1)(p+q−1)

p−1∏
i=1

(dG(ui)+p+2q−4)(dG(ui)+p+2q−4)

(p+ 2q − 3)(p+2q−3)
p−1∏
i=1

(dG(ui) + p+ q − 2)(dG(ui)+p+q−2)

·

∏
1≤i<j≤p−1

(dG(ui)+dG(uj)+2q−4)(dG(ui)+dG(uj)+2q−4)∏
1≤i<j≤p−1

(dG(ui) + dG(uj))(dG(ui)+dG(uj))

·

q−1∏
i=2

(2p+ 2q − 5)(2p+2q−5)
∏

2≤i<j≤q−1

(2p+ 2q − 6)(2p+2q−6)

q−1∏
i=2

(p+ 2q − 3)(p+2q−3)
∏

2≤i<j≤q−1

(2q − 2)(2q−2)

·

p−1∏
i=1

q−1∏
j=2

(dG(ui) + p+ 2q − 5)(dG(ui)+p+2q−5)

q−1∏
i=2

(2q − 2)(2q−2)

>

(p+ q − 1)(p+q−1)
p−1∏
i=1

q−1∏
j=2

(dG(ui) + p+ 2q − 5)(dG(ui)+p+2q−5)

(p+ 2q − 3)(p+2q−3)
q−1∏
i=2

(2q − 2)(2q−2)

≥(p+ q − 1)(p+q−1) (dG(u1) + p+ 2q − 5)(dG(u1)+p+2q−5)(q−2)

(p+ 2q − 3)(p+2q−3)

·
( (dG(u2) + p+ 2q − 5)(dG(u2)+p+2q−5)

(2q − 2)(2q−2)

)q−2

> 1.

This completes the proof. �
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Figure 9. Transformation B2.
Transformation B2: Suppose G is a graph as depicted in Figure 9, Kp is a
clique of G, where p ≥ 3, V (Kp) = {u0, u1, · · · , up−1}. P = u1w1 · · ·wt (t ≥ 2)
is a path attached to u1. NG(u0) = {u1, u2, · · · , up−1}, NG(u1) = {u0, u2, · · · ,
up−1, w1}. Gi (2 ≤ i ≤ p − 1) is the subgraph attached to ui (2 ≤ i ≤ p − 1).
Let G′ = G− wt−1wt + u0wt, as depicted in Figure 9.

Lemma 4.2. Suppose G′ and G are graphs in Figure 9. Then Π∗
2(G

′) > Π∗
2(G).

Proof. If t = 2, for p ≥ 3, by Lemma 2.2, we have

Π∗
2(G

′)

Π∗
2(G)

=

(2p)2p(p+ 1)(p+1)(p+ 1)(p+1)
p−1∏
i=2

(dG(ui) + p)(dG(ui)+p)

(2p− 1)(2p−1)(p+ 2)(p+2)33
p−1∏
i=2

(dG(ui) + p− 1)(dG(ui)+p−1)

=

(2p)2p

(2p−1)(2p−1)

(p+2)(p+2)

(p+1)(p+1)

· (p+ 1)(p+1)

33

p−1∏
i=2

(dG(ui) + p)(dG(ui)+p)

(dG(ui) + p− 1)(dG(ui)+p−1)
> 1.

If t ≥ 3, then

Π∗
2(G

′)

Π∗
2(G)

=

(2p)2p33(p+ 1)(p+1)
p−1∏
i=2

(dG(ui) + p)(dG(ui)+p)

(2p− 1)(2p−1)4433
p−1∏
i=2

(dG(ui) + p− 1)(dG(ui)+p−1)

=
(2p)2p

(2p− 1)(2p−1)

(p+ 1)(p+1)

44

p−1∏
i=2

(dG(ui) + p)(dG(ui)+p)

(dG(ui) + p− 1)(dG(ui)+p−1)
> 1.

The proof is completed. �
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2.

Transformation B′
2: Suppose G is a graph as depicted in Figure 10, Kp is a

clique of G, where p ≥ 3. V (Kp) = {u0, u1, · · · , up−1}. P1 = u0v1 · · · vs (s ≥ 3)
is a path attached to u0 and u1w1 is a pendant edge attached to u1. NG(u0) =
{u1, u2, · · · , up−1, v1}, NG(u1) = {u0, u2, · · · , up−1, w1}. Gi (2 ≤ i ≤ p − 1) is
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the subgraph attached to ui (2 ≤ i ≤ p − 1). Let G′ = G − vs−1vs + w1vs, as
depicted in Figure 10.

Lemma 4.3. Suppose G′ and G are graphs in Figure 10. Then Π∗
2(G

′) > Π∗
2(G).

Proof. By Lemma 2.2, we notice that

Π∗
2(G

′)

Π∗
2(G)

=
(p+ 2)(p+2)3333

(p+ 1)(p+1)4433
=

(p+2)(p+2)

(p+1)(p+1)

44

33

> 1.

This finishes the proof. �
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Figure 11. Transformation B3.

Transformation B3: Suppose G is a graph as depicted in Figure 11, Kp (p ≥ 3)
and Kq (q ≥ 3) are two cliques of G. V (Kp) and V (Kq) have one cut vertex, say
u, in common. V (Kp) = {u1, u2, · · · , up−1, u}, V (Kq) = {v1, v2, · · · , vq−1, u}.
P = v1w1 · · ·wt (t ≥ 1) is a path attached to v1 and NG(v1) = {u, v2, · · · , vq−1,
w1}. Gi (1 ≤ i ≤ p− 1) is the subgraph attached to ui (1 ≤ i ≤ p− 1) and Hj

(2 ≤ j ≤ q − 1) is the subgraph attached to vj (2 ≤ j ≤ q − 1). Let G′
= G −

{uu1, uu2, · · · , uup−1, uv1, uv2, · · · , uvq−1}+{wtu}+{u1v1, u1v2, · · · , u1vq−1}+
· · ·+ {up−1v1, up−1v2, · · · , up−1vq−1}, as depicted in Figure 11.

Lemma 4.4. Suppose G′ and G are graphs in Figure 11. Then Π∗
2(G

′) > Π∗
2(G).

Proof. It can be seen that dG(u) = p+ q− 2, dG′(u) = dG(wt) = 1, dG′(wt) = 2,
dG(v1) = q, dG′(v1) = p + q − 2, dG′(ui) = dG(ui) + q − 2 (i = 1, 2, · · · , p − 1),
dG′(vj) = dG(vj)+p−2 (j = 2, · · · , q−1). For x ∈ NGi

(ui), dG′(ui)+dG′(x) =
dG(ui) + dG(x) + q − 2 > dG(ui) + dG(x), i = 1, 2, · · · , p− 1. For y ∈ NHj

(vj),
dG′(vj) + dG′(y) = dG(vj) + dG(y) + p− 2 > dG(vj) + dG(y), j = 2, 3, · · · , q− 1.

If t = 1, by the definition of Π∗
2, it follows that

Π∗
2(G

′)

Π∗
2(G)

≥
33(p+q)(p+q)

p−1∏
i=1

(dG(ui)+p+2q−4)(dG(ui)+p+2q−4)

(q + 1)(q+1)
p−1∏
i=1

(dG(ui) + p+ q − 2)(dG(ui)+p+q−2)

·

∏
1≤i<j≤p−1

(dG(ui)+dG(uj)+2q−4)(dG(ui)+dG(uj)+2q−4)∏
1≤i<j≤p−1

(dG(ui) + dG(uj))(dG(ui)+dG(uj))
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·

q−1∏
i=2

(dG(vi) + 2p+ q − 4)(dG(vi)+2p+q−4)

q−1∏
i=2

(q + dG(vi))(q+dG(vi))

·

∏
2≤i<j≤q−1

(dG(vi) + dG(vj) + 2p− 4)(dG(vi)+dG(vj)+2p−4)∏
2≤i<j≤q−1

(dG(vi) + dG(vj))(dG(vi)+dG(vj))

·

p−1∏
i=1

q−1∏
j=2

(dG(ui) + dG(vj) + p+ q − 4)(dG(ui)+dG(vj)+p+q−4)

(p+ 2q − 2)(p+2q−2)
q−1∏
i=2

(dG(vi) + p+ q − 2)(dG(vi)+p+q−2)

>
33(p+ q)(p+q)

(q + 1)(q+1)(p+ 2q − 2)(p+2q−2)

·

p−1∏
i=1

q−1∏
j=2

(dG(ui) + dG(vj) + p+ q − 4)(dG(ui)+dG(vj)+p+q−4)

q−1∏
i=2

(dG(vi) + p+ q − 2)(dG(vi)+p+q−2)

>
33(p+ q)(p+q)(dG(u1) + dG(v2) + p+ q − 4)(dG(u1)+dG(v2)+p+q−4)

(q + 1)(q+1)(p+ 2q − 2)(p+2q−2)

≥33(p+ q)(p+q)(2p+ 2q − 6)2p+2q−6

(q + 1)(q+1)(p+ 2q − 2)(p+2q−2)

since dG(u1) ≥ p−1 and dG(v2) ≥ q−1. If p ≥ 4, then Π∗
2(G

′)
Π∗

2(G) > 1. If p = 3, then
Π∗

2(G
′)

Π∗
2(G) > 33(q+3)(q+3)(2q)2q

(q+1)(q+1)(2q+1)(2q+1) . Let h(q) = 33(q+3)(q+3)(2q)2q

(q+1)(q+1)(2q+1)(2q+1) , where q ≥ 3.
Then lnh(q) = 3 ln 3+(q+3) ln(q+3)+2q ln(2q)−(q+1) ln(q+1)−(2q+1) ln(2q+

1) and (lnh(q))′ = ln (q+3)(2q)2

(q+1)(2q+1)2 . Note that (q + 3)(2q)2 − (q + 1)(2q + 1)2 =

4q2 − 5q − 1 > 0 for q ≥ 3. Therefore Π∗
2(G

′)
Π∗

2(G) > h(3) = 336666

4477 > 1.

The case of t ≥ 2 can be proved similarly. �

&%
'$r r&%

'$r
r

l
l

r
rl

r rrKp Kqu u′
u1

up−1

... ...
v1

vq−1

w1 wt

Gp−1

G1

Hq−1

· · ·
· · · - &%

'$r
r

l
l l

r
r

r r r r r· · · · · ·
Kp+q−2

u1

u′

up−1

...
...

v1 w1 wt u

vq−1

Gp−1

G1

Hq−1

G G
′

B4

Figure 12. Transformation B4.
Transformation B4: Suppose G is a graph as depicted in Figure 12, Kp

and Kq are two cliques of G, where p, q ≥ 3. Kp connects Kq by an in-
ternal path P = u · · ·u′ with length s ≥ 1. V (Kp) = {u1, u2, · · · , up−1, u},
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V (Kq) = {v1, v2, · · · , vq−1, u
′}. Pt+1 = v1w1 · · ·wt (t ≥ 1) is a path attached

to v1 and NG(v1) = {u′, v2, · · · , vq−1, w1}. Gi (1 ≤ i ≤ p − 1) is the subgraph
attached to ui (1 ≤ i ≤ p−1) and Hj (2 ≤ j ≤ q−1) is the subgraph attached to
vj (2 ≤ j ≤ q−1). Let G′

= G−{uu1, uu2, · · · , uup−1, u
′v1, u

′v2, · · · , u′vq−1}+
{wtu}+ {u1v1, u1v2, · · · , u1vq−1}+ · · ·+ {up−1v1, up−1v2, · · · , up−1vq−1}, as de-
picted in Figure 12.

Lemma 4.5. Suppose G′ and G are graphs in Figure 12. Then Π∗
2(G

′) > Π∗
2(G).

Proof. We notice that dG′(u) = 2, dG(u) = p, dG′(u′) = 1, dG(u′) = q, dG′(wt) =
2, dG(wt) = 1, dG′(v1) = p + q − 2, dG(v1) = q, dG′(ui) = dG(ui) + q − 2
(i = 1, 2, · · · , p−1), dG′(vj) = dG(vj)+p−2 (j = 2, · · · , q−1). For x ∈ NGi

(ui),
dG′(ui) + dG′(x) > dG(ui) + dG(x), i = 1, 2, · · · , p − 1. For y ∈ NHj (vj),
dG′(vj) + dG′(y) > dG(vj) + dG(y), j = 2, 3, · · · , q − 1.

If t = s = 1, in view of the definition of Π∗
2, it can be concluded that

Π∗
2(G

′)

Π∗
2(G)

≥
4433(p+q)(p+q)

p−1∏
i=1

(dG(ui)+p+2q−4)(dG(ui)+p+2q−4)

(p+ q)(p+q)(q + 1)(q+1)(2q)2q
p−1∏
i=1

(dG(ui) + p)(dG(ui)+p)

·

∏
1≤i<j≤p−1

(dG(ui)+dG(uj)+2q−4)(dG(ui)+dG(uj)+2q−4)∏
1≤i<j≤p−1

(dG(ui) + dG(uj))(dG(ui)+dG(uj))

·

q−1∏
i=2

(dG(vi) + 2p+ q − 4)(dG(vi)+2p+q−4)

q−1∏
i=2

(q + dG(vi))(q+dG(vi))

·

∏
2≤i<j≤q−1

(dG(vi) + dG(vj) + 2p− 4)(dG(vi)+dG(vj)+2p−4)∏
2≤i<j≤q−1

(dG(vi) + dG(vj))(dG(vi)+dG(vj))

·

p−1∏
i=1

q−1∏
j=2

(dG(ui) + dG(vj) + p+ q − 4)(dG(ui)+dG(vj)+p+q−4)

q−1∏
i=2

(dG(vi) + q)(dG(vi)+q)

>
4433

(q+1)(q+1)(2q)2q
·

p−1∏
i=1

q−1∏
j=2

(dG(ui)+dG(vj)+p+q−4)(dG(ui)+dG(vj)+p+q−4)

q−1∏
i=2

(dG(vi)+q)(dG(vi)+q)

.
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If q = 3, then

Π∗
2(G

′)

Π∗
2(G)

>
4433(dG(u1) + dG(v2) + p− 1)(dG(u1)+dG(v2)+p−1)

4466
> 1.

If q > 3, then

Π∗
2(G

′)

Π∗
2(G)

>
4433(dG(u1)+dG(v2)+p+q−4)(dG(u1)+dG(v2)+p+q−4)

(q + 1)(q+1)(2q)2q

· (dG(u1)+dG(v3)+p+q−4)(dG(u1)+dG(v3)+p+q−4)

≥4433(2p+ 2q − 6)(2p+2q−6)(2p+ 2q − 6)(2p+2q−6)

(q + 1)(q+1)(2q)2q
> 1.

The cases of t, s > 1; t = 1, s > 1 or t > 1, s = 1 can be proved similarly as
the case of t = s = 1, and we omit the details. �

Let G ∈ GV (n, k). In order to get the maximum Π∗
2(G), we first provide a

definition and a notation. Suppose Kp (p ≥ 3) and Kq (q ≥ 3) are two cliques in
G. If Kp connects Kq by a path P (perhaps |E(P )| = 0, namely Kp and Kq has
a vertex in common which is a cut vertex of G) such that P doesn’t intersect
some other cliques Kr with r ≥ 3, we call Kp and Kq are adjacent. Denote
Gn,k = {G |G ∈ GV (n, k) is the graph obtained fromKn−k by attaching at most
one pendant path to each of its vertices}. Clearly, {G1

n,k, G
2
n,k, G

3
n,k} ⊂ Gn,k.

Theorem 4.6. Suppose G ∈ GV (n, k), where 1 ≤ k ≤ n− 3. Then
(i) if 1 ≤ k ≤ n

2 , Π∗
2(G) ≤ (n − k + 1)(n−k+1)k(2n − 2k)(2n−2k)(k2)(2n −

2k − 2)(2n−2k−2)(n−2k
2 )(2n− 2k − 1)(2n−2k−1)k(n−2k) with equality if and only if

G ∼= G1
n,k;

(ii) if n
2 < k ≤ 2n

3 , Π∗
2(G) ≤ (n−k+2)(n−k+2)(2k−n)(2n−2k)(2n−2k)(n−k

2 )(n−
k + 1)(n−k+1)(2n−3k)33(2k−n) with equality if and only if G ∼= G2

n,k;
(iii) if 2n

3 < k ≤ n−3, Π∗
2(G) ≤ (n−k+2)(n−k+2)(n−k)(2n−2k)(2n−2k)(n−k

2 )

33(n−k)44(3k−2n) with equality if and only if G ∼= G3
n,k.

Proof. Suppose G ∈ GV (n, k) has the maximum Π∗
2. First some claims will be

given.
Claim 1. Each cut vertex of G connects exactly two blocks, and all blocks of
G are cliques.

Proof. By contradiction. Assume that x is a cut vertex in G, and G − x =∪r
i=1Gi, where r ≥ 3. Choose y ∈ V (G2)\{x} and z ∈ V (Gr)\{x}, and let

G∗ = G+ yz. Clearly, G∗ ∈ GV (n, k). By Lemma 2.1, it follows that Π∗
2(G) <

Π∗
2(G

∗), a contradiction. Thus, we get that each cut vertex connects exactly two
blocks of G. Moreover, by Lemma 2.1, we can conclude that all blocks in G are
cliques. �
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By Claim 1, the following Claim 2 is obtained.
Claim 2. If two cliques Kp, Kq with p, q ≥ 3 of G are adjacent, then the path,
say P , connecting Kp and Kq is either |E(P )| = 0 or an internal path.
Claim 3. Let Kq be an endblock of G. Then q = 2.

Proof. We prove this claim by contradiction. Suppose that q ≥ 3. Let Kp

(p ≥ 2) be a clique such that Kp connects Kq by a cut vertex, say u. By Claim
1, u is not the cut vertex of some other cliques. By Lemma 4.1, G can be changed
to G′ by transformation B1 with a larger Π∗

2, which contradicts the choice of G.
Hence, q = 2. �

By Claim 1, we suppose that Kn1
,Kn2

, · · · ,Knr
are all of the cliques in G.

Claim 4. Let Kn1
,Kn2

, · · · ,Knr
be all of the cliques in G. Then there is only

one clique Kni
with ni ≥ 3.

Proof. To the contrary, suppose that there are two cliques Kp, Kq (Kp,Kq ∈
{Kn1

,Kn2
, · · · , Knr

} and p ̸= q) such that Kp is adjacent to Kq, where p, q ≥ 3.
By Claim 3, it can be seen that Kp and Kq are not endblocks. Furthermore,
by Claim 1, we can choose two such blocks such that at least one of them has a
pendant path attached to one of its vertex. Suppose without loss of generality
that Kq is one of such cliques which has a pendant path, say Pt+1 = v1w1 · · ·wt

(t ≥ 1), attached on v1 ∈ V (Kq). By Claim 2 , we can see that Kp connects Kq

by a cut vertex u or an internal path P = u · · ·u′ with length s ≥ 1. By Lemma
4.4 or 4.5, G can be changed to G′ by transformation B3 or B4 with a larger
Π∗

2, a contradiction. �

Claim 5. Suppose Kp is the only clique with p ≥ 3. Then p = n− k.

Proof. In view of Claim 1 and Claim 4, it can be concluded that there exist k+1
cliques in G and among them, k cliques are isomorphic to K2. Furthermore, G ∈
GV (n, k), and each cut vertex belongs to two cliques, we can get immediately
that 2k + p− k = n. As a result, p = n− k. �

Claim 6. Let H ∈ Gn,k. Then Π∗
2(H) ≤ Π∗

2(G
1
n,k) or Π∗

2(H) ≤ Π∗
2(G

2
n,k) or

Π∗
2(H) ≤ Π∗

2(G
3
n,k).

Proof. Let H ∈ Gn,k such that H has the maximum Π∗
2. If H ∼= G1

n,k or G3
n,k

or G2
n,k, the claim holds. Otherwise, H ∈ Gn,k\{G1

n,k, G
2
n,k, G

3
n,k}. Then H

satisfies the following (i) or (ii).
(i) There is a vertex of Kn−k with no pendant path attached in H, and H

has a pendant path with length equal or more than 2;
(ii) H has a pendant edge and a pendant path of length greater than 2.
By Lemma 4.2 or 4.3, H can be changed to H ′ by transformation B2 or B′

2

with a larger Π∗
2, which contradicts the assumption of H. �
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By Claim 4 and 5, it follows that G ∈ Gn,k. By Claim 6, it follows that
Π∗

2(G) ≤ Π∗
2(G

1
n,k) when 1 ≤ k ≤ n

2 , Π∗
2(G) ≤ Π∗

2(G
2
n,k) when n

2 < k ≤ 2n
3 and

Π∗
2(G) ≤ Π∗

2(G
3
n,k) when 2n

3 < k ≤ n− 3. �

5. Modified second multiplicative Zagreb index of graphs with fixed
vertex connectivity or edge connectivity

Lemma 5.1. Let G ∼= Ks∨ (Kn1
∪Kn2

) and G′ ∼= Ks∨ (Kn1−1∪Kn2+1), where
n1 + n2 = n− s, n2 ≥ n1 ≥ 2. Then

Π∗
2(G

′) > Π∗
2(G).

Proof. By the definition of Π∗
2, it follows that

Π∗
2(G

′)

Π∗
2(G)

=
(2n1 + 2n2 + 2s− 2)(2n1+2n2+2s−2)(s2)

(2n1 + 2n2 + 2s− 2)(2n1+2n2+2s−2)(s2)

· (2n1 + 2s− 4)(2n1+2s−4)(n1−1
2 )(2n2 + 2s)(2n2+2s)(n2+1

2 )

(2n1 + 2s− 2)(2n1+2s−2)(n1
2 )(2n2 + 2s− 2)(2n2+2s−2)(n2

2 )

· (2n1+n2+2s−3)(2n1+n2+2s−3)s(n1−1)(2n2+n1+2s−1)(2n2+n1+2s−1)s(n2+1)

(2n1+n2+2s−2)(2n1+n2+2s−2)sn1(2n2+n1+2s−2)(2n2+n1+2s−2)sn2

=
(2n1 + 2s− 4)(2n1+2s−4)

(n1−1)(n1−2)
2 (2n2 + 2s)(2n2+2s)

(n2+1)n2
2

(2n1 + 2s− 2)(2n1+2s−2)
n1(n1−1)

2 (2n2 + 2s− 2)(2n2+2s−2)
n2(n2−1)

2

·
(

(n+s−3+n1)(n+s−3+n1)(n1−1)(n+s−1+n2)(n+s−1+n2)(n2+1)

(n+ s− 2 + n1)(n+s−2+n1)n1(n+ s− 2 + n2)(n+s−2+n2)n2

)s

.

By Lemma 2.3 and 2.4 (a = n+ s− 2), we have Π∗
2(G

′)
Π∗

2(G) > 1. �

Theorem 5.2. Suppose G is a graph of order n ≥ 4 with vertex connectiv-
ity κ < n − 1. Then Π∗

2(G) ≤ (κ + n − 1)(κ+n−1)κ(2n − 2)(2n−2)(κ2)(2n −
3)(2n−3)κ(n−κ−1)(2n − 4)(2n−4)(n−κ−1

2 ) with equality if and only if G ∼= Kκ ∨
(K1 ∪Kn−κ−1).

Proof. Choose G such that G has the maximum Π∗
2 among all graphs of order

n with vertex connectivity κ. Assume that X is a vertex cut with |X| = κ of
G such that G − X has κ components, say G1, G2, · · · , Gκ, where κ ≥ 2. Let
n1 = |V (G1)| and n2 = |V (G2 ∪ · · · ∪ Gκ)|. It is clear that G is a spanning
sub-graph of Kκ∨ (Kn1

∪Kn2
). By Lemma 2.1, Π∗

2(G) ≤ Π∗
2(Kκ∨ (Kn1

∪Kn2
)).

Moreover, by Lemma 5.1, G ∼= Kκ ∨ (K1 ∪Kn−κ−1). �

Theorem 5.3. Suppose G is a graph of order n ≥ 4 with edge connectiv-
ity λ < n − 1. Then Π∗

2(G) ≤ (λ + n − 1)(λ+n−1)λ(2n − 2)(2n−2)(λ2)(2n −
3)(2n−3)λ(n−λ−1)(2n − 4)(2n−4)(n−λ−1

2 ) with equality if and only if G ∼= Kλ ∨
(K1 ∪Kn−λ−1).
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Proof. Choose G such that G has the maximum Π∗
2 among all graphs on n

vertices with edge connectivity λ. Suppose the vertex connectivity of G is κ. It
follows that κ ≤ λ < n− 1. By Theorem 5.2, we have G ∼= Kκ ∨ (K1 ∪Kn−κ−1).
Furthermore, Kκ∨(K1∪Kn−κ−1) is a spanning sub-graph ofKλ∨(K1∪Kn−λ−1)
for κ ≤ λ, in view of Lemma 2.1, the theorem holds immediately. �

Remark 5.1. In [20], Wang et al. determined the graph Kk
n (obtained by adding

a vertex to a clique Kn−1 and joining the vertex to exactly k ≤ n− 1 vertices of
Kn−1) which has the maximum modified multiplicative Zagreb indices in graphs
with vertex connectivity or edge connectivity at most k. The values of modified
multiplicative Zagreb indices of Kk

n in [20] are wrong. It is clear that Kk
n
∼=

Kk ∨ (K1 ∪ Kn−k−1). When we obtain the maximum modified multiplicative
Zagreb indices in graphs with vertex connectivity or edge connectivity at most
k, it seems easier to read writing like this section.
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