DOI QR코드

DOI QR Code

Analysis of bifurcation characteristics for the Seolmacheon experimental catchment based on variable scale of source basin

수원 유역의 변동성 규모를 기반으로 한 설마천 시험유역의 분기 특성 해석

  • Kim, Joo-Cheol (International Water Resources Research Institute, Chungnam National University) ;
  • Jung, Kwan Sue (Department of Civil Engineering, Chungnam National University)
  • 김주철 (충남대학교 국제수자원연구소) ;
  • 정관수 (충남대학교 토목공학과)
  • Received : 2021.02.23
  • Accepted : 2021.03.10
  • Published : 2021.05.31

Abstract

This study analyzes bifurcation characteristics of the Seolmacheon experimental catchment by extracting the shape variation of channel network due to variable scale of source basin or threshold area. As the area of source basin decreases, a bifurcation process of channel network occurs within the basin of interest, resulting in the elongation of channel network (increase of total channel length) as well as the expansion of channel network (increase of the source number). In the former case, the elongation of channel reaches overwhelms the generation of sources, whereas, in the latter case, the drainage path network tends to fulfill the inner space of the basin of interest reflecting the opposite trend. Therefore, scale invariance of natural channel network could be expressed to be a balanced geomorphologic feature between the elongation of channel network and the expansion of channel network due to decrease of source basin scale. The bifurcation structure of the Seolmacheon experimental catchment can be characterized by the coexistence of the elongation and scale invariance of channel network, and thus a further study is required to find out which factor is more crucial to rainfall transformation into runoff.

본 연구에서는 수원 유역 혹은 한계지지면적의 변동성 규모에 따른 하천망의 형상 변화를 추출하여 설마천 시험유역의 분기 특성에 대한 해석을 수행하였다. 수원 유역의 면적이 감소함에 따라 대상 유역의 내부에는 하천망의 분기 현상이 발생하며, 그 결과로서 하천망의 신장(총 하천 길이의 증가)과 함께 하천망의 확장(수원의 개수 증가)이 동시에 나타남을 볼 수 있었다. 하천망이 신장되는 경우 하천 구간의 길이가 증가하는 경향이 새로운 수원이 생성되는 경향보다 우세하게 나타나는 반면, 하천망이 확장되는 경우 반대 거동에 따라 배수망이 유역 내부의 공간을 채워가는 과정으로 나타남을 확인할 수 있었다. 이로부터 자연 유역의 하천망들이 가지는 규모 불변성은 수원 유역의 규모가 감소함에 따라 나타나는 하천망의 신장 특성과 하천망의 확장 특성이 상호 균형을 이루면서 발현되는 지형학적 특성으로 기술될 수 있었다. 설마천 시험유역의 분기 구조는 하천망의 신장 특성과 규모 불변성이 공존하는 형태로 판단되며 강우로 인한 유출 현상에 보다 지배적인 역할을 하는 요인에 대한 후속 연구가 필요한 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 충남대학교의 학술연구비 지원 및 한국연구재단 이공분야 기초연구사업(NRF-2019R1I1A1A01063063)의 지원을 받아 수행되었습니다.

References

  1. Brutsaert, W., and Nieber, J.L. (1977). "Regionalized drought flow hydrogaphs from a matured glaciated plateau." Water Resources Research, Vol. 13, No. 3, pp. 637-643. https://doi.org/10.1029/WR013i003p00637
  2. Horton, R.E. (1945). "Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology." Geological Society of America Bulletin, Vol. 56, No. 3, pp. 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  3. Ijjasz-Vasquez, E.J., and Bras, R.L. (1995). "Scaling regimes of local slope versus contributing area in digital elevation models." Geomorphology, Vol. 12, pp. 299-311. https://doi.org/10.1016/0169-555X(95)00012-T
  4. Kim, D., and Lee, N. (2011). "The operation of the Seolmacheon experimental catchment of the 2010." 2011 Conference of Korea Water Resources Association, Daegu.
  5. Kim, J.C., and Jung, K. (2021). "Estimation of fractal dimension for Seolma creek experimental basin on the basis of fractal tree concept." Journal of Korea Water Resources Association, Vol. 54, No. 1, pp. 49-60. https://doi.org/10.3741/JKWRA.2021.54.1.49
  6. Kim, J.C., and Kim, J.H. (2007). "Morphological representation of channel network by dint of DEM." Journal of Korea Water Resources Association, Vol. 40, No. 4, pp. 287-297. https://doi.org/10.3741/JKWRA.2007.40.4.287
  7. Montgomery, D.R., and Dietrich, W.E. (1989). "Source areas, drainage density, and channel initiation." Water Resources Research, Vol. 25, No. 8, pp. 1907-1918. https://doi.org/10.1029/WR025i008p01907
  8. Montgomery, D.R., and Foufoula-Georgiou, E. (1993). "Channel network source representation using digital elevation models." Water Resources Research, Vol. 29, No. 12, pp. 3925-3934. https://doi.org/10.1029/93WR02463
  9. Moussa, R. (2003). "On morphometric properties of basins, scale effects and hydrological response." Hydrological Processes, Vol. 17, pp. 33-58. https://doi.org/10.1002/hyp.1114
  10. Moussa, R. (2008). "Effect of channel network topology, basins segmentation and rainfall spatial distribution on the geomorphologic instantaneous unit hydrograph transfer function." Hydrological Processes, Vol. 22, pp. 395-419. https://doi.org/10.1002/hyp.6612
  11. Moussa, R., and Bocquillon, C. (1996). "Fractal analyses of tree-like networks from digital elevation model data." Journal of Hydrology, Vol. 187, pp. 157-172. https://doi.org/10.1016/S0022-1694(96)03093-4
  12. Newman, W.I., Turcotte, D.L., and Gabrielov, A.M. (1997). "Fractal trees with side branching." Fractals, Vol. 5, No. 4, pp. 603-614. https://doi.org/10.1142/S0218348X97000486
  13. O'Callaghan, J.F., and Mark, D.M. (1984). "The extraction of drainage networks from digital elevation data." Computer Vision, Graphics, and Image Processing, Vol. 28, pp. 324-344.
  14. Paik, K., and Kumar, P. (2004), "Hydraulic geometry and the nonlinearity of the network instantaneous response." Water Resources Research, Vol. 40, No. 3, W03602. doi: 10.1029/2003WR002821
  15. Rodriguez-Iturbe, I., and Valdes, J.B. (1979). "The geomorphologic structure of hydrologic response." Water Resources Research, Vol. 15, No. 6, pp. 1409-1420. https://doi.org/10.1029/WR015i006p01409
  16. Rodriguez-Iturbe, I., Ijjasz-Vasquez, E.J., Bras, R.L., and Tarboton, D.G. (1992). "Power law distributions of discharge mass and energy in river basins." Water Resources Research, Vol. 28, No. 4, pp. 1089-1093. https://doi.org/10.1029/91WR03033
  17. Saunders, W.K., and Maidment, D.R. (1996). A GIS assessment of nonpoint source pollution in the San Antonio-Nueces Coastal basin. Center for Research in Water Resources, University of Texas, Austin, TX, U.S.
  18. Shreve, R.L. (1966). "Statistical law of stream numbers." Journal of Geology, Vol. 74, pp. 17-37. https://doi.org/10.1086/627137
  19. Smart, J.S. (1972). "Channel networks." Advanced in Hydrosciense, Vol. 8, pp. 350-346.
  20. Strahler, A.N. (1952). "Hypsometric (area-altitude) analysis of erosional topography." Geological Society of America Bulletin, Vol. 63, No. 11, pp. 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
  21. Tarboton, D.G. (1996). "Fractal river networks, Horton's laws and Tokunaga cyclicity." Journal of Hydrology, Vol. 187, pp. 105-117. https://doi.org/10.1016/S0022-1694(96)03089-2
  22. Tarboton, D.G. (2003). "Terrain analysis using digital elevation models in hydrology." 23rd ESRI International Users Conference, San Diego, CA, U.S.
  23. Tarboton, D.G., Bras, R.L., and Rodriguez-Iturbe, I. (1988). "The fractal nature of river networks." Water Resources Research, Vol. 24, No. 8, pp. 1317-1322. https://doi.org/10.1029/WR024i008p01317
  24. Tarboton, D.G., Bras, R.L., and Rodriguez-Iturbe, I. (1992). "A physical basis for drainage density." Geomophology, Vol. 5, pp. 59-75. https://doi.org/10.1016/0169-555X(92)90058-V
  25. Yang, S., and Paik, K. (2017). "New findings on river network organization: Law of eigenarea and relationships among Hortonian scaling ratios." Fractals, Vol. 25, No. 3, 1750029. https://doi.org/10.1142/S0218348X17500293