DOI QR코드

DOI QR Code

Study on the Control of Biofilm Formation Inhibition on Pantoea agglomerans by Anti-bacterial Effect of Indole

인돌의 항균 효과에 의한 Pantoea agglomerans의 바이오필름 생성 억제 조절에 관한 연구

  • Jin, Seul (Department of Life-Science, Handong Global University) ;
  • Yang, Woong-Suk (Nodaji R&D Center, Nodaji Co., Ltd.) ;
  • Hwang, Cher-Won (Global Leadership School, Handong Global University) ;
  • Lee, Jae-Yong (Department of Advanced Aerospace Materials Engineering, Kyungwoon University)
  • 진슬 (한동대학교 생명과학부) ;
  • 양웅석 (포항노다지마을(주)) ;
  • 황철원 (한동대학교 GLS학부) ;
  • 이재용 (경운대학교 항공신소재공학과)
  • Received : 2021.01.18
  • Accepted : 2021.04.19
  • Published : 2021.05.31

Abstract

In this study, we investigated the effects of indole on biofilm formation inhibition in Pantoea agglomerans (P. agglomerans). In the biofilm growth assay, indole inhibited biofilm formation across all the growth time. Depending on biofilm growth stage, indole exhibited biofilm inhibition and anti-bacterial effects on planktonic cells. Through the analysis of the proportion rate between biofilm and Colony Forming Units (CFU) and inhibition rate of indole, we confirmed that depending on the biofilm stage of P. agglomerans, indole treatment timing was more important than the treatment duration. By comparing gene expression rates through rt-qPCR P.agglomerans affected by indole was found to significantly change quorum sensing (pagI/R) and indole transportation (bssS) gene expressions. Throughout all, indole exhibited both antimicrobial and anti-biofilm effects on P. agglomerans. In addition, we confirmed the anti-biofilm effects of indole on mature biofilm. In conclusion, indole as a signal molecule, can exhibit anti-biofilm effects through bacterial quorum sensing inhibition and indole affects. Therefore, indole can regulate biofilm bacteria especially gram-negative opportunistic pathogens.

Keywords

Acknowledgement

본 논문은 2019년도 정부(교육부)의 제원으로 한국연구재단의 지원을 받아 수행된 기초연구 사업(2017R1D1A1B03032867)입니다.

References

  1. Barash, I., Manulis-Sasson, S., 2009, Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case, Annu Rev Phytopathol, 47, 133-52. https://doi.org/10.1146/annurev-phyto-080508-081803
  2. Choi, Y. W., Lee, H. W., Kim, S. M., Lee, J. C., Lee, Y. C., Seol, S. Y., Cho, D. T., Kim, J. M., 2011, Biofilm forming ability and production of curli and cellulose in clinical isolates of Enterobacteriaceae, The Korean Journal of Microbiology, 47, 335-341.
  3. Domka, J., Lee, J., Wood, T. K., 2006, YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling, Applied and environmental microbiology, 72(4), 2449-2459. https://doi.org/10.1128/AEM.72.4.2449-2459.2006
  4. Dutkiewicz, J., Mackiewicz, B., Lemieszek, M. K., Glolec, M., Milanowski, J., 2016, Pantoea agglomerans: a mysterious bacterium of evil and good, Annual of Agricultural and Environmental Medicine, 23(2), 206-222. https://doi.org/10.5604/12321966.1203879
  5. El-Azizi, M., Rao, S., Kanchanapoom, T., Khardori, N., 2005, In vitro activity of vancomycin, quinupristin/ dalfopristin, and linezolid against intact and disrupted biofilms of Staphylococci, Ann. Clin. Microbiol. Antimicrob, 4, 2. https://doi.org/10.1186/1476-0711-4-2
  6. Hall, C. W., Mah, T. F., 2017, Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria, FEMS Microbiol. Rev., 41(3), 276-301. https://doi.org/10.1093/femsre/fux010
  7. Jacques, M., Aragon, V., Tremblay, Y. D. N., 2010, Biofilm formation in bacterial pathogens of veterinary importance, Animal Health Research Reviews, 11, 97-121. https://doi.org/10.1017/S1466252310000149
  8. Jahid, I. K., Ha, S. D., 2012, A Review of microbial biofilms of produce: future challenge to food safety, Food Science and Biotechnology, 21, 299-316. https://doi.org/10.1007/s10068-012-0041-1
  9. Jiang, J., Wu, S., Wang, J., Feng, Y., 2015, AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19, J. Basic Microbiol., 55(5), 607-16. https://doi.org/10.1002/jobm.201400472
  10. Kang, E. J., Park, J. H., Jin, S., Kim, Y. R., Do, H. K., Yang, W. S., Lee, J. Y., Hwang, C. W., 2019, Comparison of in vitro anti-biofilm activities of natural plant extracts against environment harmful bacteria, J. Environ. Sci. Int., 28(2), 225-233. https://doi.org/10.5322/jesi.2019.28.2.225
  11. Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., Hall-Stoodley, L., 2017, Targeting microbial biofilms: current and prospective therapeutic strategies, Nat. Rev. Microbiol., 15(12), 740-755. https://doi.org/10.1038/nrmicro.2017.99
  12. Kim, J. Y., Yoo, H. L., Lee, Y. D., Park, J. H., 2011, Detection of Bacillus cereus Group from Raw rice and characteristics of biofilm formation, Korean J. Food. Nutr., 24, 657-663. https://doi.org/10.9799/ksfan.2011.24.4.657
  13. Kim, J. S., Park, W. J., 2013, Indole inhibits bacterial quorum-sensing transmission by interfering with quorum-sensing regulator folding, Microbiology, 159(Pt_12), 2616-2625. https://doi.org/10.1099/mic.0.070615-0
  14. Kim, J., Park, W., 2015, Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration?. Journal of Microbiol, 53, 421-428. https://doi.org/10.1007/s12275-015-5273-3
  15. Li, Y. H., Tian, X., 2012, Quorum sensing and bacterial social interactions in biofilms, Sensors (Basel, Switzerland), 12(3), 2519-2538. https://doi.org/10.3390/s120302519
  16. Livak. K. J., Schmittgen. T. D., 2001, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔct Method, METHODS 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  17. Lee, J. H., Lee, J. T., 2010, Indole as an intercellular signal in microbial communities, FEMS Microbiology Review, 34(4), 426-44. https://doi.org/10.1111/j.1574-6976.2009.00204.x
  18. Lee, J. H., Kim, Y. G., Kim, M. S., Kim, E. M., Choi, H, J., Kim, Y, H., Lee, J, T., 2017, Indole-associated predator-prey interactions between the nematode Caenorhabditis elegans and bacteria, Environ. Microbiol., 19(5), 1776-1790. https://doi.org/10.1111/1462-2920.13649
  19. Ma, Q., Zhang, X., Qu, Y., 2018, Biodegradation and biotransformation of indole: advances and Perspectives, Frontier in microbiology, 9, 2625. https://doi.org/10.3389/fmicb.2018.02625
  20. Miller, B. M., Bassler, B. L., 2001, Quorum Sensing Bacteria, Annu. Rev, Microbiol., 55, 165-99. https://doi.org/10.1146/annurev.micro.55.1.165
  21. Mitra, M. B., Jens, R., 2016, Antibiofilm activity of essential oils, and plant extracts gainst Staphylococcus aureus and Escherichia coli biofilms, Food Control., 61, 156-164. https://doi.org/10.1016/j.foodcont.2015.09.036
  22. Miyashiro, T., Ruby, E. G., 2012, Shedding light on bioluminescence regulation in Vibrio fischeri. Molecular microbiology, 84(5), 795-806. https://doi.org/10.1111/j.1365-2958.2012.08065.x
  23. O'Toole, G., Kaplan, H. B., Kolter, R., 2000, Biofilm formation as microbial development, Annu. Rev. Microbiol., 54, 49-79. https://doi.org/10.1146/annurev.micro.54.1.49
  24. O'Toole, G. A., 2011, Microtiter dish biofilm formation assay, Journal of visualized experiments : JoVE, (47), 2437.
  25. Paluch, E., Rewak-Soroczynska, J., Jedrusik, I., Mazurkiewicz, E., Jermakow, K., 2020, Prevention of biofilm formation by quorum quenching, Applied microbiology and biotechnology, 104(5), 1871-1881 https://doi.org/10.1007/s00253-020-10349-w
  26. Pinero-Fernandez, S., Chimerel, C. Keyser, U. F., Summers, D. K., 2011, Indole transport across Escherichia coli membranes, Journal of bacteriology, 193(8), 1793-1798. https://doi.org/10.1128/JB.01477-10
  27. Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., Sintim, H. O., 2015, Biofilm formation mechanisms and targets for developing antibiofilm agents, Future. Med. Chem., 7(4), 493-512. https://doi.org/10.4155/fmc.15.6
  28. Sonowal, R., Swimm, A., Sahoo, A., Luo, L., Matsunaga, Y., Wu, Z., Bhingarde, J. A., Ejzak. E. A., Ranawade, A., Qadota. H., Powell, D. N., Capaldo, C. T., Flacker, J. M., Jones, R. M., Benian, G. M., Kalman, D., 2017, Indoles from commensal bacteria extend healthspan, PNAS, 114(36).
  29. Roy, R., Tiwari, M., Donelli, G., Tiwari, V., 2018, Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action, Virulence, 9(1), 522-554. https://doi.org/10.1080/21505594.2017.1313372
  30. Rutherford, S. T., Bassler, B. L., 2012, Bacterial quorum sensing: its role in virulence and possibilities for its control, Cold Spring Harbor perspectives in medicine, 2(11).
  31. Sunder, L., Chang. F. N., 1993, Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus, Journal of General Microbiology, 139, 3130-3148.
  32. Solano, C., Echeverz, M., Lasa, I., 2014, Biofilm dispersion and quorum sensingm, Curr. Opin. Microbiol., 18, 96-104. https://doi.org/10.1016/j.mib.2014.02.008
  33. Velmourougane, K., Prasanna, R., Saxena, A. K., 2017, Agriculturally important microbial biofilms: Present status and future prospects, J. Basic Microbiology, 88, 512-520.
  34. Ng, W. L., Bassler, B. L., 2009, Bacterial quorum -sensing network architectures, Annual review of genetics, 43, 197-222. https://doi.org/10.1146/annurev-genet-102108-134304