DOI QR코드

DOI QR Code

확률론적 저장대모형을 이용한 하천에서의 물질혼합거동 해석

Analysis of solute transport in rivers using a stochastic storage model

  • 김병욱 (서울대학교 건설환경공학부) ;
  • 서일원 (서울대학교 건설환경공학부) ;
  • 권시윤 (서울대학교 건설환경공학부) ;
  • 정성현 (서울대학교 건설환경공학부) ;
  • 윤세훈 (서울대학교 건설환경공학부)
  • Kim, Byunguk (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Seo, Il Won (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kwon, Siyoon (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Jung, Sung Hyun (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Yun, Se Hun (Department of Civil and Environmental Engineering, Seoul National University)
  • 투고 : 2021.02.16
  • 심사 : 2021.04.06
  • 발행 : 2021.05.31

초록

하천에서의 용존물질의 혼합거동을 신속하게 예측하기 해석하기 위하여 1차원 추적모형이 개발되어 왔다. 그 중 저장대모형(Transient Storage Model, TSM)은 자연하천의 복잡하고 불규칙한 수리·지형적인 특성을 단순하게 반영할 수 있다는 장점때문에 가장 많이 사용되는 1차원 추적모형이다. 하지만 TSM의 정확도는 본류대 및 저장대의 면적, 물질교환계수 등 모형의 매개변수에 의존하며 이들은 직접적으로 측정될 수 없다는 단점이 있다. 또한 TSM은 농도곡선의 꼬리에 나타나는 저장대특성의 형태를 지수함수형태로 반영하는데 이는 실제 추적자실험을 통해 관측되는 꼬리는 형태와 다르다는 평가가 제기되고 있다. 이에 따라 본 연구에서는 1차원 확률론적 저장대모형에 대한 수치모형을 개발하여 자연하천에 적용하고 그 결과를 TSM의 모의결과와 비교하였다. 상기의 모형을 검증하기 위하여 낙동강의 1차 지류 중 하나인 감천의 4.85 km의 구간에서 추적자 실험을 실시하였다. 본 추적자 실험을 통해 측정한 농도곡선과 본 연구에서 제시된 확률론적 저장대모형의 모의 곡선의 꼬리부 멱함수 기울기를 비교해본 결과, 오차율은 평균 0.24으로 나타났는데, 이는 1차원 이송-분산 모형과 TSM로부터의 오차율인 14.03과 1.87에 비해 보다 정확한 값이다. 본 연구 결과, 감천에서의 저장대 특성을 나타내는 하상의 체류시간분포는 지수함수분포보다는 멱함수 분포에 가까운 것으로 밝혀졌다.

The one-dimensional solute transport models have been developed for recent decades to predict behavior and fate of solutes in rivers. Transient storage model (TSM) is the most popular model because of its simple conceptualization to consider the complexity of natural rivers. However, the TSM is highly dependent on its parameters which cannot be directly measured. In addition, the TSM interprets the late-time behavior of concentration curves in the shape of an exponential function, which has been evaluated as not suitable for actual solute behavior in natural rivers. In this study, we suggested a stochastic approach to the solute transport analysis. We delineated the model development and model application to a natural river, and compared the results of the proposed model to those of the TSM. To validate the proposed model, a tracer test was carried out in the 4.85 km reach of Gam Creek, one of the first-order tributaries of Nakdong River, South Korea. As a result of comparing the power-law slope of the tail of breakthrough curves, the simulation results from the stochastic storage model yielded the average error rate of 0.24, which is more accurate than the 14.03 and 1.87 from advection-dispersion model and TSM, respectively. This study demonstrated the appropriateness of the power-law residence time distribution to the hyporheic zone of the Gam Creek.

키워드

과제정보

본 연구는 과학기술정보통신부 및 국토교통부 "공공혁신조달 연계 무인이동체 및 SW플랫폼 개발 사업"(20DPIW-C153746-02)의 연구비 지원에 의하여 연구되었습니다. 본 연구는 서울대학교 공학연구원과 건설환경종합연구소의 지원 하에 이루어졌습니다.

참고문헌

  1. Baek, D., Seo, I. W., Kim, J.S., and Nelson, J.M. (2019). "UAV-based measurements of spatio-temporal concentration distributions of fluorescent tracers in open channel flows." Advances in Water Resources, Vol. 127, pp. 76-88. https://doi.org/10.1016/j.advwatres.2019.03.007
  2. Bencala, K.E., and Walters, R.A. (1983). "Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage zone model." Water Resources Research, Vol. 19, pp. 718-724. https://doi.org/10.1029/WR019i003p00718
  3. Bencala, K.E., Gooseff, M.N., and Kimball, B.A. (2011). "Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections." Water Resources Research, Vol. 47, No. 3, pp. 1-9. https://doi.org/10.1029/2010WR009138
  4. Boano, F., Packman, A. I., Cortis, A., Revelli, R., and Ridolfi, L. (2007a). "A continuous time random walk approach to the stream transport of solutes." Water Resources Research, Vol. 43, No. 10, pp. 1-12.
  5. Boano, F., Revelli, R., and Ridolfi, L. (2007b). "Bedform-induced hyporheic exchange with unsteady flows." Advances in Water Resources, Vol. 30, No. 1, pp. 148-156. https://doi.org/10.1016/j.advwatres.2006.03.004
  6. Bottacin-Busolin, A., Dallan, E., and Marion, A. (2020) "STIR-RST: A software tool for reactive smart tracer studies." Environmental Modelling & Software, Vol. 135, 104894. https://doi.org/10.1016/j.envsoft.2020.104894
  7. Bottacin-Busolin, A., Marion, A., Musner, T., Tregnaghi, M., and Zaramella, M. (2011). "Evidence of distinct contaminant transport patterns in rivers using tracer tests and a multiple domain retention model." Advances in Water Resources, Vol. 34, No. 6, pp. 737-746. https://doi.org/10.1016/j.advwatres.2011.03.005
  8. Choi, S.Y., Seo, I.W., and Kim, Y.O. (2020). "Parameter uncertainty estimation of transient storage model using Bayesian inference with formal likelihood based on breakthrough curve segmentation." Environmental Modelling & Software, Vol. 123, 104558. https://doi.org/10.1016/j.envsoft.2019.104558
  9. Deng, Z., Bengtsson, L., and Singh, V.P. (2006). "Parameter estimation for fractional dispersion model for rivers." Environmental Fluid Mechanics, Vol. 6, No. 5, pp. 451-475. https://doi.org/10.1007/s10652-006-9004-5
  10. Deng, Z.Q., Singh, V.P., and Bengtsson, L. (2004). "Numerical solution of fractional advection-dispersion equation." Journal of Hydraulic Engineering, Vol. 130, No. 5, pp. 422-431. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(422)
  11. Elder, J. (1959). "The dispersion of marked fluid in turbulent shear flow." Journal of Fluid Mechanics, Vol. 5, No. 4, pp. 544-560. https://doi.org/10.1017/S0022112059000374
  12. Elliott, A.H. (1991). Transfer of solutes into and out of streambeds. Ph. D. dissertation, California Institute of Technology, Pasadena, CA, U.S.
  13. Elliott, A.H., and Brooks, N.H. (1997). "Transfer of nonsorbing solutes to a streambed with bed forms: Theory." Water Resources Research, Vol. 33, No. 1, pp. 123-136. https://doi.org/10.1029/96WR02784
  14. Fischer, H.B. (1968). "Dispersion in Natural Streams." Journal of the Sanitary Engineering Division, ASCE, Vol. 95, pp. 927-943. https://doi.org/10.1061/JSEDAI.0000900
  15. Fischer, H.B. (1975). "Simple method for predicting dispersion in streams." Journal of the Environmental Engineering Division, ASCE, Vol. 101, No. 3, pp. 453-455. https://doi.org/10.1061/JEEGAV.0000360
  16. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., and Brooks, N.H. (1979). "Mixing in inland and coastal waters." Academic Press, Vol. 4, pp. 2758-2771.
  17. Haggerty, R., McKenna, S.A., and Meigs, L.C. (2000). "On the late-time behavior of tracer test breakthrough curves." Water Resources Research, Vol. 36, No. 12, pp. 3467-3479. https://doi.org/10.1029/2000WR900214
  18. Haggerty, R., Wondzell, S.M., and Johnson, M.A. (2002). "Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream." Geophysical Research Letters, Vol. 29, No. 13, pp. 18-1-18-4. https://doi.org/10.1029/2002GL014743
  19. Hays J.R., Krenkel P.A., and Schnelle K.B. (1967). Mass transport mechanisms in open-channel flow. Technical Report, No. 8, Vanderbilt University, Nashville, TN.
  20. Kilpatrick, F.A., and Wilson, J.F. (1989). "Measurement of time of travel in streams by dye tracing." US Government Printing Office, Vol. 3, pp. 1-27.
  21. Kim, B., and Seo, I.W. (2020). "Development of one-dimensional river storage model for mixing analysis of hazardous chemicals in rivers." Proceedings of the Korea Water Resources Association Conference. KWRA, pp. 148-148.
  22. Kim, B., Seo, I.W., Kwon, S., Jung, S.H., and Choi, Y. (2021). "Modelling One-dimensional reactive transport of toxic contaminants in natural rivers." Environmental Modelling & Software, Vol. 137, 104971. https://doi.org/10.1016/j.envsoft.2021.104971
  23. Kim, J.S., Baek, D., Seo, I.W., and Shin, J. (2019). "Retrieving shallow stream bathymetry from UAV-assisted RGB imagery using a geospatial regression method." Geomorphology, Vol. 341, pp. 102-114. https://doi.org/10.1016/j.geomorph.2019.05.016
  24. Kraft, D. (1988). A software package for sequential quadratic programming. DFVLR, German.
  25. Kwon, S., Noh, H., Seo, I. W., Jung, S.H., and Baek, D. (2021). "Identification framework of contaminant spill in rivers using machine learning with breakthrough curve analysis." International Journal of Environmental Research and Public Health, Vol. 18, No. 3, 1023. https://doi.org/10.3390/ijerph18031023
  26. Marion, A., and Zaramella, M. (2005a). "A residence time model for stream-subsurface exchange of contaminants." Acta Geophysica Polonica, Vol. 53, No. 4, 527.
  27. Marion, A., and Zaramella, M. (2005b). "Diffusive behavior of bedforminduced hyporheic exchange in rivers." Journal of Environmental Engineering, Vol. 131, No. 9, pp. 1260-1266. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1260)
  28. Marion, A., Zaramella, M., and Bottacin-Busolin, A. (2008). "Solute transport in rivers with multiple storage zones: The STIR model." Water Resources Research, Vol. 44, No. 10, pp. 1-10.
  29. Marion, A., Zaramella, M., and Packman, A.I. (2003). "Parameter estimation of the transient storage model for stream-subsurface exchange." Journal of Environmental Engineering, Vol. 129, No. 5, pp. 456-463. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:5(456)
  30. Meerschaert, M.M., Zhang, Y., and Baeumer, B. (2008). "Tempered anomalous diffusion in heterogeneous systems." Geophysical Research Letters, Vol. 35, No. 17, pp. 1-5.
  31. Noh, H., Baek, D., and Seo, I.W. (2019). "Analysis of the applicability of parameter estimation methods for a transient storage model." Journal of Korea Water Resources Association, Vol. 52, pp. 681-695.
  32. Noh, H., Kwon, S., Seo, I.W., Baek, D., and Jung, S.H. (2021). "Multi-gene genetic programming regression model for prediction of transient storage model parameters in natural rivers." Water, Vol. 13, No. 1, 76.
  33. Rutherford, J.C. (1994). River mixing. John Wiley and Son Limited, Hoboken, NJ, U.S.
  34. Seo, I.W., and Maxwell, W.H.C. (1992). "Modeling low-flow mixing through pools and riffles." Journal of Hydraulic Engineering, Vol. 118, No. 10, pp. 1406-1423. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1406)
  35. Seo, I.W., Kim, J.S., and Jung, S.H. (2016). "Numerical simulation of two-dimensional pollutant mixing in rivers using RAMS." Procedia Engineering, Vol. 154, pp. 544-549. https://doi.org/10.1016/j.proeng.2016.07.550
  36. Shin, J., Seo, I.W., and Baek, D. (2020). "Longitudinal and transverse dispersion coefficients of 2D contaminant transport model for mixing analysis in open channels." Journal of Hydrology, Vol. 583, 124302. https://doi.org/10.1016/j.jhydrol.2019.124302
  37. Taylor, G.I. (1954). "The dispersion of matter in turbulent flow through a pipe." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 223, No. 1155, pp. 446-468.
  38. Valentine, E.M., and Wood, I.R. (1977). "Longitudinal dispersion with dead zones." Journal of the Hydraulics Division, Vol. 103, No. 9, pp. 975-990. https://doi.org/10.1061/JYCEAJ.0004845
  39. Worman, A., Packman, A.I., Johansson, H., and Jonsson, K. (2002). "Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers." Water Resources Research, Vol. 38, No. 1, pp. 2-1-2-15.
  40. Zaramella, M., Marion, A., Lewandowski, J., and Nutzmann, G. (2016). "Assessment of transient storage exchange and advection-dispersion mechanisms from concentration signatures along breakthrough curves." Journal of Hydrology, Vol. 538, pp. 794-801. https://doi.org/10.1016/j.jhydrol.2016.05.004
  41. Zaramella, M., Packman, A.I., and Marion, A. (2003). "Application of the transient storage model to analyze advective hyporheic exchange with deep and shallow sediment beds." Water Resources Research, Vol. 39, No. 7, pp. 1-12.