DOI QR코드

DOI QR Code

ON A THREE-DIMENSIONAL SYSTEM OF DIFFERENCE EQUATIONS WITH VARIABLE COEFFICIENTS

  • KARA, MERVE (Department of Mathematics, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University) ;
  • YAZLIK, YASIN (Department of Mathematics, Faculty of Science and Arts, Nevsehir Hacibektas Veli University) ;
  • TOUAFEK, NOURESSADAT (Department of Mathematics, LMAM Laboratory, Mohamed Seddik Ben Yahia University) ;
  • AKROUR, YOUSSOUF (Normale Superieure de Constantine, Departement des Sciences Exactes et d'Informatique and LMAM Laboratory, Mohamed Seddik Ben Yahia University)
  • Received : 2020.06.16
  • Accepted : 2020.10.09
  • Published : 2021.05.30

Abstract

Consider the three-dimensional system of difference equations $x_{n+1}=\frac{{\prod_{j=0}^{k}}z_n-3j}{{\prod_{j=1}^{k}}x_n-(3j-1)\;\(a_n+b_n{\prod_{j=0}^{k}}z_n-3j\)}$, $y_{n+1}=\frac{{\prod_{j=0}^{k}}x_n-3j}{{\prod_{j=1}^{k}}y_n-(3j-1)\;\(c_n+d_n{\prod_{j=0}^{k}}x_n-3j\)}$, $z_{n+1}=\frac{{\prod_{j=0}^{k}}y_n-3j}{{\prod_{j=1}^{k}}z_n-(3j-1)\;\(e_n+f_n{\prod_{j=0}^{k}}y_n-3j\)}$, n ∈ ℕ0, where k ∈ ℕ0, the sequences $(a_n)_{n{\in}{\mathbb{N}}_0$, $(b_n)_{n{\in}{\mathbb{N}}_0$, $(c_n)_{n{\in}{\mathbb{N}}_0$, $(d_n)_{n{\in}{\mathbb{N}}_0$, $(e_n)_{n{\in}{\mathbb{N}}_0$, $(f_n)_{n{\in}{\mathbb{N}}_0$ and the initial values x-3k, x-3k+1, …, x0, y-3k, y-3k+1, …, y0, z-3k, z-3k+1, …, z0 are real numbers. In this work, we give explicit formulas for the well defined solutions of the above system. Also, the forbidden set of solution of the system is found. For the constant case, a result on the existence of periodic solutions is provided and the asymptotic behavior of the solutions is investigated in detail.

Keywords

Acknowledgement

Authors are thankful to the editor and reviewers for their constructive review.

References

  1. R. Abo-Zeid, Global behavior of a fourth-order difference equation with quadratic term, Bol. Soc. Mat. Mex. 25 (2019), 187-194. https://doi.org/10.1007/s40590-017-0180-8
  2. Y. Akrour, N. Touafek and Y. Halim, On a system of difference equations of second order solved in closed form, Miskolc Math. Notes 20 (2019), 701-717. https://doi.org/10.18514/MMN.2019.2923
  3. L. Berg and S. Stevic, On some systems of difference equations, Appl. Math. Comput. 218 (2011), 1713-1718. https://doi.org/10.1016/j.amc.2011.06.050
  4. D. Clark and M.R.S. Kulenovic, A coupled system of rational difference equations, Comput. Math. Appl. 43 (2002), 849-867. https://doi.org/10.1016/S0898-1221(01)00326-1
  5. D. Clark, M.R.S. Kulenovic and J.F. Selgrade, Global asymptotic behavior of a two-dimensional difference equation modelling competition, Nonlinear Anal. 52 (2003), 1765-1776. https://doi.org/10.1016/S0362-546X(02)00294-8
  6. C.A. Clark, M.R.S. Kulenovic and J.F. Selgrade, On a system of rational difference equations, J. Difference Equ. Appl. 11 (2005), 565-580. https://doi.org/10.1080/10236190412331334464
  7. I. Dekkar, N. Touafek and Q. Din, On the global dynamics of a rational difference equation with periodic coefficients, J. Appl. Math. Comput. 60 (2019), 567-588. https://doi.org/10.1007/s12190-018-01227-w
  8. S. Elaydi, An Introduction to Difference Equations, Springer, New York, 1996.
  9. M.M. El-Dessoky, E.M. Elsayed and M. Alghamdi, Solutions and periodicity for some systems of fourth order rational difference equations, J. Comput. Anal. Appl. 18 (2015), 179-194.
  10. H. El-Metwally and E.M. Elsayed, Qualitative study of solutions of some difference equations, Abstr. Appl. Anal. 2012 (2012), 1-17.
  11. E.M. Elsayed, F. Alzahrani, I. Abbas and N.H. Alotaibi, Dynamical behavior and solution of nonlinear difference equation via Fibonacci sequence, J. Appl. Anal. Comput. 10 (2020), 282-296.
  12. M. Garic-Demirovic and M. Nurkanovic, Dynamics of an anti-competitive two dimensional rational system of difference equations, Sarajevo J. Math. 7 (2011), 39-56.
  13. A. Gelisken and M. Kara, Some general systems of rational difference equations, J. Difference Equ. 2015 (2015), 1-7. https://doi.org/10.1155/2015/396757
  14. N. Haddad, N. Touafek and E.M. Elsayed, A note on a system of difference equations, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. 63 (2017), 599-606.
  15. N. Haddad, N. Touafek and J.F.T. Rabago, Well-defined solutions of a system of difference equations, J. Appl. Math. Comput. 56 (2018), 439-458. https://doi.org/10.1007/s12190-017-1081-8
  16. Y. Halim, A system of difference equations with solutions associated to Fibonacci numbers, Int. J. Difference. Equ. 11 (2016), 65-77.
  17. Y. Halim and M. Bayram, On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequences, Math. Methods Appl. Sci. 39 (2016), 2974-2982. https://doi.org/10.1002/mma.3745
  18. S. Kalabusic, M.R.S. Kulenovic and E. Pilav, Global dynamics of a competitive system of rational difference equations in the plane, Adv. Difference Equ. 2009 (2009), 1-30.
  19. M. Kara and Y. Yazlik, Solvability of a system of nonlinear difference equations of higher order, Turkish J. Math. 43 (2019), 1533-1565. https://doi.org/10.3906/mat-1902-24
  20. M. Kara, Y. Yazlik and D.T. Tollu, Solvability of a system of higher order nonlinear difference equations, Hacet. J. Math. Stat. 49 (2020), 1566-1593.
  21. M. Kara and Y. Yazlik, On the system of difference equations $x_n=\frac{x_{n-2}y_{n-3}}{y_{n-1}(a_n+b_nx_{n-2}y_{n-3})}$, $y_n=\frac{y_{n-2}x_{n-3}}{x_{n-1}(a_n+{\beta}_ny_{n-2}x_{n-3})}$, J. Math. Extension 14 (2020), 41-59.
  22. M. Kara, N. Touafek and Y. Yazlik, Well-defined solutions of a three-dimensional system of difference equations, Gazi University Journal of Science 33 (2020),
  23. M.R.S. Kulenovic and Z. Nurkanovic, Global behavior of a three-dimensional linear fractional system of difference equations, J. Math. Anal. Appl. 310 (2005), 673-689. https://doi.org/10.1016/j.jmaa.2005.02.042
  24. M.R.S. Kulenovic and M. Nurkanovic, Asymptotic behavior of a competitive system of linear fractional difference equations, Adv. Difference Equ. 2006 (2006), 1-13.
  25. M.R.S. Kulenovic and M. Nurkanovic, Basins of attraction of an anti-competitive system of difference equations in the plane, Comm. Appl. Nonlinear Anal. 19 (2012), 41-53.
  26. A.S. Kurbanli, I. Yalcinkaya and A. Gelisken, On the behavior of the solutions of the system of rational difference equations, Int. J. Phys. Sci. 8 (2013), 51-56. https://doi.org/10.5897/IJPS12.444
  27. S. Stevic, On some solvable systems of difference equations, Appl. Math. Comput. 218 (2012), 5010-5018. https://doi.org/10.1016/j.amc.2011.10.068
  28. Y. Yazlik and M. Kara, On a solvable system of difference equations of higher-order with period two coefficients, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019), 1675-1693. https://doi.org/10.31801/cfsuasmas.548262
  29. Y. Yazlik and M. Kara, On a solvable system of difference equations of fifth-order, Eskisehir Tech. Univ. J. Sci. Tech. B-Theoret. Sci. 7 (2019), 29-45.