DOI QR코드

DOI QR Code

Mitochondrial Genome of Spirometra theileri Compared with Other Spirometra Species

  • Ndosi, Barakaeli Abdieli (Department of Parasitology, Parasitology Research Center and Parasite Resource Bank, Chungbuk National University, School of Medicine) ;
  • Park, Hansol (Department of Parasitology, Parasitology Research Center and Parasite Resource Bank, Chungbuk National University, School of Medicine) ;
  • Lee, Dongmin (Department of Parasitology, Parasitology Research Center and Parasite Resource Bank, Chungbuk National University, School of Medicine) ;
  • Choe, Seongjun (Department of Parasitology, Parasitology Research Center and Parasite Resource Bank, Chungbuk National University, School of Medicine) ;
  • Kang, Yeseul (Department of Parasitology, Parasitology Research Center and Parasite Resource Bank, Chungbuk National University, School of Medicine) ;
  • Nath, Tilak Chandra (Department of Parasitology, Parasitology Research Center and Parasite Resource Bank, Chungbuk National University, School of Medicine) ;
  • Bia, Mohammed Mebarek (Department of Parasitology, Parasitology Research Center and Parasite Resource Bank, Chungbuk National University, School of Medicine) ;
  • Eamudomkarn, Chatanun (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Jeon, Hyeong-Kyu (Department of Parasitology, Parasitology Research Center and Parasite Resource Bank, Chungbuk National University, School of Medicine) ;
  • Eom, Keeseon S. (Department of Parasitology, Parasitology Research Center and Parasite Resource Bank, Chungbuk National University, School of Medicine)
  • 투고 : 2020.06.24
  • 심사 : 2021.02.01
  • 발행 : 2021.04.30

초록

This study was carried out to provide information on the taxonomic classification and analysis of mitochondrial genomes of Spirometra theileri. One strobila of S. theileri was collected from the intestine of an African leopard (Panthera pardus) in the Maswa Game Reserve, Tanzania. The complete mtDNA sequence of S. theileri was 13,685 bp encoding 36 genes including 12 protein genes, 22 tRNAs and 2 rRNAs with absence of atp8. Divergences of 12 protein-coding genes were as follow: 14.9% between S. theileri and S. erinaceieuropaei, 14.7% between S. theileri and S. decipiens, and 14.5% between S. theileri with S. ranarum. Divergences of 12 proteins of S. theileri and S. erinaceieuropaei ranged from 2.3% in cox1 to 15.7% in nad5, while S. theileri varied from S. decipiens and S. ranarum by 1.3% in cox1 to 15.7% in nad3. Phylogenetic relationship of S. theileri with eucestodes inferred using the maximum likelihood and Bayesian inferences exhibited identical tree topologies. A clade composed of S. decipiens and S. ranarum formed a sister species to S. erinaceieuropaei, and S. theileri formed a sister species to all species in this clade. Within the diphyllobothridean clade, Dibothriocephalus, Diphyllobothrium and Spirometra formed a monophyletic group, and sister genera were well supported.

키워드

과제정보

This work was supported by the International Parasite Resource Bank and Inclusive Business Solution (IBS) project, Korea (No. 2020-0042).

참고문헌

  1. Vitta A, Srisawangwong T, Sithithaworn P, Laha T, Tesana S. Laboratory production and maintenance of Spirometra erinacei spargana. Southeast Asian J Trop Med Public Health 2004; 35 (suppl): 280-283.
  2. Li MW, Song HQ, Li C, Lin HY, Xie WT, Lin RQ, Zhu XQ. Sparganosis in mainland China. Int J Infect Dis 2011; 15: 154-156. https://doi.org/10.1016/j.ijid.2010.10.001
  3. Baer JG. Contribution a la faune helminthologique Sud-Africaine. Note preliminaire. Ann. Parasitol Hum Comp 1924; 2: 237-247 (in French). https://doi.org/10.1051/parasite/1924023239
  4. Baer JG. Contribution to the helminth fauna of South Africa. Mammalian cestodes. Union of South Africa. Department of Agriculture. 11th & 12th Reports of the Director of Veterinary Education and Research. 1926, pp 63-136.
  5. Baer JG, Fain A. Cestodes. Report d'Exploration Parcs Nationaux de I'Upemba. Brussel, Belgium. Insitut des Parcs Nationaux du Congo Belge. 1955, pp 36.
  6. Opuni EK, Muller RL. Studies on Spirometra theileri (Baer, 1925) n. comb. 1. Identification and biology in the laboratory. J Helminthol 1974; 48: 15-23. https://doi.org/10.1017/S0022149X00022550
  7. Graber M. Diphyllobothriosis and sparganosis in tropical Africa. Rev Elev Med Vet Pays Trop 1981; 34: 303-311 (in French).
  8. Muller-Graf CD. A coprological survey of intestinal parasites of wild lions (Panthera leo) in the Serengeti and the Ngorongoro Crater, Tanzania, East Africa. J Parasitol 1995; 8: 812-814. https://doi.org/10.2307/3283987
  9. Eom KS, Park H, Lee D, Choe S, Kang Y, Bia MM, Ndosi BA, Nath TC, Eamudomkarn C, Keyyu J, Fyumagwa R, Mduma S, Jeon HK. Identity of Spirometra theileri from a leopard (Panthera pardus) and spotted hyena (Crocuta crocuta) in Tanzania. Korean J Parasitol 2019; 57: 639-645. https://doi.org/10.3347/kjp.2019.57.6.639
  10. Ndosi BA, Park H, Lee D, Choe S, Kang Y, Nath TC, Bia MM, Eamudomkarn C, Jeon HK, Eom KS. Morphological and molecular identification of Spirometra tapeworms (Cestoda: Diphyllobothriidae) from carnivorous mammals in the Serengeti and Selous ecosystems of Tanzania. Korean J Parasitol 2020; 58: 653-660. https://doi.org/10.3347/kjp.2020.58.6.653
  11. Kavana N, Sonaimuthu P, Kasanga C, Kassuku A, Al-Mekhlafi HM, Fong MY, Khan MB, Mahmud R, Lau YL. Seroprevalence of sparganosis in rural communities of northern Tanzania. Am J Trop Med Hyg 2016; 95: 874-876. https://doi.org/10.4269/ajtmh.16-0211
  12. Yamasaki H, Sanpool O, Rodpai R, Sadaow L, Laummaunwai P, Un M, Thanchomnang T, Laymanivong S, Aung WPP, Intapan PM, Maleewong W. Spirometra species from Asia: Genetic diversity and taxonomic challenges. Parasitol Int 2021; 80: 102181. https://doi.org/10.1016/j.parint.2020.102181
  13. Avise JC. Molecular Markers, Natural History and Evolution. New York, USA. Chapman & Hall. 1994, 1-511.
  14. Park JK, Kim KH, Kang S, Jeon HK, Kim JH, Littlewood DT, Eom KS. Characterization of the mitochondrial genome of Diphyllobothrium latum (Cestoda: Pseudophyllidea)-implications for the phylogeny of eucestodes. Parasitology 2007; 134: 749-759. https://doi.org/10.1017/S003118200600206X
  15. Kim KH, Jeon HK, Kang S, Sultana T, Kim GJ, Eom KS, Park JK. Characterization of the complete mitochondrial genome of Diphyllobothrium nihonkaiense (Diphyllobothriidae: Cestoda), and development of molecular markers for differentiating fish tapeworms. Mol Cell 2007; 3: 379-390. https://doi.org/10.1016/S1097-2765(00)80465-7
  16. Eom KS, Park H, Lee D, Choe S, Kim KH, Jeon HK. Mitochondrial genome sequences of Spirometra erinaceieuropaei and S. decipiens (Cestoidea: Diphyllobothriidae). Korean J Parasitol 2015; 53: 455-463. https://doi.org/10.3347/kjp.2015.53.4.455
  17. Jeon HK, Park H, Lee D, Choe S, Kang Y, Bia MM, Lee SH, Eom KS. Complete sequence of the mitochondrial genome of Spirometra ranarum: comparison with S. erinaceieuropaei and S. decipiens. Korean J Parasitol 2019; 57: 55-60. https://doi.org/10.3347/kjp.2019.57.1.55
  18. Liu W, Zhao GH, Tan MY, Zeng DL, Wang KZ, Yuan ZG, Lin RQ, Zhu XQ, Liu Y. Survey of Spirometra erinaceieuropaei spargana infection in the frog Rana nigromaculata of the Hunan Province of China. Vet Parasitol 2010; 173: 152-156. https://doi.org/10.1016/j.vetpar.2010.06.005
  19. Liu W, Liu GH, Li F, He DD, Wang T, Sheng XF, Zeng DL, Yang FF, Liu Y. Sequence variability in three mitochondrial DNA regions of Spirometra erinaceieuropaei spargana of human and animal health significance. J Helminthol 2012; 86: 271-275. https://doi.org/10.1017/S0022149X1100037X
  20. Boonyasiri A, Cheunsuchon P, Suputtamongkol Y, Yamasaki H, Sanpool O, Maleewong W, Intapan PM. Nine human sparganosis cases in Thailand with molecular identification of causative parasite species. Am J Trop Med Hyg 2014; 51: 389-393. https://doi.org/10.4269/ajtmh.14-0178
  21. Jeon HK, Lee KH, Kim KH, Hwang UW, Eom KS. Complete sequence and structure of the mitochondrial genome of the human tapeworm, Taenia asiatica (Platyhelminthes; Cestoda). Parasitol 2005; 130: 717-726. https://doi.org/10.1017/S0031182004007164
  22. Jeon HK, Park H, Lee D, Choe S, Kim KH, Huh S, Sohn WM, Chai JY, Eom KS. Human infections with Spirometra decipiens plerocercoids identified by morphologic and genetic analyses in Korea. Korean J Parasitol 2015; 53: 299-305. https://doi.org/10.3347/kjp.2015.53.3.299
  23. Lowe TM, Eddy SR. tRNAscan-SE: a program improved detection of transfer DNA genes in genomic sequence. Nuclei Acids Res 1997; 25: 955-964. https://doi.org/10.1093/nar/25.5.955
  24. Matzura O, Wennborg A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci 1996; 12: 247-249. https://doi.org/10.1093/bioinformatics/12.3.247
  25. Posada D. jModelTest: Phylogenetic model averaging. Mol Biol Evol 2008; 25: 1253-1256. https://doi.org/10.1093/molbev/msn083
  26. Suchard MA, Kitchen CMR, Sinsheimer JS, Weiss RE. Hierarchical phylogenetic models for analyzing multipartite sequence data. Syst Biol 2003; 52: 649-664. https://doi.org/10.1080/10635150390238879
  27. Littlewood DTJ, Lockyer AE, Webster BL, Johnston DA, Le TH. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol 2006; 39: 452-467. https://doi.org/10.1016/j.ympev.2005.12.012
  28. Von Nickisch-Rosenegk M, Brown WM, Boore JL. Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that Platyhelminths and Eutrochozoans. Mol Biol Evol 2001; 18: 721-830. https://doi.org/10.1093/oxfordjournals.molbev.a003854
  29. Garey JR, Wolstenholme DR. Paltyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNAser(AGN) that contains a dihydrouridine arm replacement loop, and of serinespecifying AGA and AGG codons. J Mol Evol 1989; 28: 374-387. https://doi.org/10.1007/BF02603072
  30. Clary DO, Wolstenholme DR. Drosophila mitochondrial DNA: conserved sequences in the A+T rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J Mol Evol 1987; 25: 116-125. https://doi.org/10.1007/BF02101753
  31. Johns GC, Avise JC. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Bio Evol 1998; 15: 1481-1490. https://doi.org/10.1093/oxfordjournals.molbev.a025875
  32. Herbert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species Proc Biol Sci 2003; 270 (suppl): 96-99. https://doi.org/10.1098/rsbl.2003.0025