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Abstract In binary-modulation non-orthogonal multiple access (NOMA), there has been rare
researches for the 141 capacity region to be achieved; how much total power is required and what
power allocation is assigned for this total power. In this paper, the average total transmitted power
to achieve 1+1 capacity region of binary pulse amplitude modulation 2PAM) NOMA is investigated,
with a tolerable loss. Then, based on the sufficient average total transmitted power, we calculate
the power allocation coefficient to achieve 1+1 capacity region. Furthermore, it is shown by
numerical results that with the tolerable loss less than 0.008, near 1+1 capacity region is achieved.
We also calculate numerically the power allocation coefficient for both users to achieve near 1+1
capacity region. As a result, for 2PAM NOMA to operate near 1+1 capacity region, proper total
power with appropriate power allocation could be calculated in design of NOMA systems.
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1. Introduction considered as a promising candidate multiple
access (MA), owing to its larger spectral
efficiency and low latency[1,2]. NOMA is based

on superposition coding (SC) and successive

The non-orthogonal multiple access (NOMA)
scheme in the fifth-generation (5G) network is
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interference cancellation (SIC)[3,4]. Also NOMA
can improve the spectral efficiency by sharing
the channel resources[5]. In addition, the
bit-error rate (BER) of NOMA networks was
analyzed in [6]. The effect of local oscillator
imperfection for NOMA was investigated [7]. In
[8], the BER with randomly generated signals
was analyzed. In [9], the exact BER expression
was derived for the two or three-user cases.
The average symbol error rate (SER) expression
was presented in [10]. The importance of SIC in
NOMA was reported [11]. The secure
NOMA-enabled mobile network is studied in
[12]. In [13], the physical layer security in
NOMA was considered. The intelligent reflecting
surface (IRS) NOMA was studied in [14]. In [15],
the mutual-aid NOMA scheme was studied. The
higher order modulation schemes in NOMA-
based visible light communication (VLC) systems
was investigated in [16]. Various receivers’
structures of NOMA were studied in term of
BER performance measure [17]. Impacts of
channel estimation errors on BER performance
was investigated in [18]. Asymmetric binary
pulse amplitude modulation (2PAM) NOMA was
designed and BER performance of this NOMA
scheme was analyzed in [19]. Correlated
information sources have been investigated in
term of achievable data rates in [20].

In this paper, we calculates the average total
transmitted power and allocation for achieving
near 1+1 capacity region of 2PAM NOMA. To
this end, first, the average total transmitted
power is investigated, with a tolerable loss.
Then, the power allocation coefficient to
achieve 1+1 capacity region is calculated. It is
shown that with the tolerable loss less than
0.008, near 1+1 capacity region is achieved. We
also calculate numerically the power allocation
coefficients for both users to achieve near 1+1

capacity region.

The remainder of this paper is organized as
follows. In Section 2, the system and channel
model are described. The achievable data rates
for both users in NOMA are presented in
Section 3. The average total transmitted power
is calculated in Section 4. The results are
presented and discussed in Section 5. Finally,

the conclusions are presented in Section 6.

2. System and Channel Model

To introduce the technical principle of
NOMA, we start with a historical development:
In 5G mobile networks, the number of users
served in a cell coverage increases dramatically,
and a new paradigm is required to
accommodate the number of users. However,
channel resources, such as time, frequency, and
space, are fully utilized in orthogonal multiple
access (OMA), i.e., time division multiple access
(TDMA), frequency division multiple access
(FDMA),

multiplexing (OFDM), code division multiple

orthogonal  frequency  division
access (CDMA), and multiple input multiple
output (MIMO). Hence, the standard body for
5G mobile communicatioons has considered
new techniques. A candidate for such

NOMA, which is the
based

technique, to provide high system capacity and

requirement s
superposition multi-user access
low latency.

In a cellular downlink NOMA transmission
system, all channels are assumed to be block
fading. A base station and two users are within
the cell The complex channel coefficient
between the mth user and the base station is
denoted by hk,,, m=1,2. The channels are sorted
as |h | > 1hy|.The base station will transmit
the superimposed signal == vaPs, + vV(1—a)Ps,,

where s,, is the message for the mth user with

unit power,  Els’]=Els,]=1, where Elu]
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represents the expectation of a random variable
(RV) u, « is the power allocation factor, with
0<w<1, and P is the average total transmitted

power. The observation at the mth user is given

by
Ym = | hm | ‘T+nm’ (1)

where n,, ~ N(0,N,/2) is additive white Gaussian
noise (AWGN). The notation N(u %) represents
the distribution of Gaussian RV with mean pu
and variance ¥, and N, is one-sided power
spectral density. In this paper, we assume that
the standard 2PAM, s,E{+1,—1}. It is assumed
that for the given information bits b,b,€{0,1},
the bit-to-symbol mapping of the standard
2PAM is given by

3. Achievable Data Rates for Users in NOMA

In this section, we consider the achievable
data rates for each user in the standard 2-user
2PAM NOMA.

First, we consider the single user channel
capacity with standard 2PAM. It is well-known
that the channel capacity ¢ of a binary-input
AWGN channel is given as

57 3)

— Py ply | b=0)log,Py | 5y | b=0)dy
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The above-mentioned channel capacity in

equation (3) is depicted in Fig. 1.
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Fig. 1. Channel capacity of binary-input AWGN channel.

As shown in Fig. 1, the binary input channel
capacity " in equation (3) asymptotically
approaches the value of one, as the SNR
P/(N,/2) increase. We note that the capacity of
equiprobable M-ary constellations cannot be
larger than log,(M). In our case of 2PAM, the
maximum capacity is one, even though the SNR
P/(N,/2) — co. Therefore, in this paper, based on

Fig. 1, we assume that
d”)(—P :10):1. 4)

In the standard 2-user 2PAM NOMA, for the

first user, the achievable data rate is given as

R =h(y, | b)—h(y, | bb,)
-/ P, B;(yl I b, :O)Ingpy, B;(yl | b, :O)dyz

— E[-N(O,N,/2)],
©)

where E[—N(0,N,/2)] :%logz(QweN“/Q) and
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2. Achievable data rate of first user for

standard 2PAM NOMA.
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Fig. 3. Achievable data rate of second user for

standard 2PAM NOMA.
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For the second user, the achievable data rate

is given as

Ry =h(yy )=h(y, | by)

Feo PYQIBQ(yzl 52:0)
= P, | b, =0)log,———————F——dy,,
[ L BQ(yz ) ) 08, PyQ(yz) Yo
@)
where

Sum rate, R1+R2
R P
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Achievable sum rate of first and second

users for standard 2PAM NOMA.

and
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4. Calculation of Average Total Transmitted

is assumed

Power for 1+1 Capacity Region

that |k | =15 and
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Table 1. Maximum sum rate for varying total power

P/(N,/2) Max Sum Rate
30 1.945
40 1.979
50 1.992
60 1.997

We consider the average total transmitted
signal power to noise power ratio (SNR)
P/(N,/2)=30. Now, based on the assumption of
equation (4), we calculate the average total
transmitted power to be required for achieving
1+1 capacity region of 2-user 2PAM NOMA.
The SNR of the first user is given by

| hy | *Pa
NE (10
| hy |?Pa

Thus, for N2

=10, based on equation

(10), the power allocation «=0.22, as shown in
Fig. 2. Similary, for the second user, the power
allocation «=0.05 as shown in Fig. 3.

However, as shown in Fig. 2 and Fig. 3, the
power allocation ranges for the capacity one to
be achieved does not overlap each other, ie.,
the 1+1 capacity region cannot be achieved
with the given P/(N,/2)=30. We also depict the
sum rate in Fig. 4. As shown in Fig. 4, we
observe the similar results, as those in Fig. 2
and Fig. 3, i.e., the 1+1 capacity region cannot
be achieved with the given P/(N,/2)=30. Thus,
we need more power, i.e., P/(N,/2)>30. Based on
Table 1, when P/(N,/2)=50, there is no
significant gain of the maximum sum rate.
Hence, we choose P/(N,/2)=50 for achieving
near 1+1 capacity. In the next section. we
calculate the power allocation for this near 1+1

capacity.
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Fig. 5. Achievable data rates of first and second
users for standard 2PAM NOMA.
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Fig. 6. Achievable sum rate of first and second
users for standard 2PAM NOMA.

5. Numerical Results and Discussions

In this section, with the sufficient total
transmitted power P/(N,/2)=50, we calculate the
power allocation o for achieving near 1+1
capacity region of 2-user 2PAM NOMA. First,
we depict the achievable data rates R, and R,,
especially as a single figure, in Fig. 5. As shown
in Fig. 5, the power allocation range to be

achieved by both users is calculated as

0.12 <a<0.14. (11
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Therefore, we choose a reasonable power
allocation «=0.13. With such power allocation,
we depict the sum rate R +R,, in Fig. 6. As
shown in Fig. 6, the near 1+1 capacity region is
achieved with the power allocation «=0.13 and
P/(Ny/2)=50. 1t should be noted that
user-fairness in the NOMA
schemes is established with 0 <a<«0.5. Typical

conventional

values in the literature of NOMA can be found
as 0<a<0.25. This user-fairness can be stated
as follows; the stronger the channel gain is, the
less power is allocated. Hence, our calculated
value of the power allocation coefficient could
be reasonable in the practical NOMA systems.

In addition, for a better comparison, we
present the results of experiments for different
channel environments, i.e., equal channel gains
' hy | =1 h, | =1. It is observed in Fig. 7 that
the power allocation range to be achieved by

both users is calculated as
0.20 < a0 < 0.22. (12)

Therefore, we choose a reasonable power
allocation a=0.21. With such power allocation,
we depict the sum rate R +R,, in Fig. 8. As
shown in Fig. 8, the similar results as those in
Fig. 6 are observed, i.e., the near 1+1 capacity
region is achieved with the power allocation
=021 and P/(N,/2)=50.

6. Conclusion

In this paper, we calculated the average total
transmitted power and allocation for achieving
near 1+1 capacity region of 2PAM NOMA. The
average total transmitted power to achieve 1+1
capacity region was studied, with a tolerable

loss.

~ = T o = S
o 0
"
o ¥
R '
[0} I
= "
@© "
— "
S i
T O
© : : Near one capacity achieved for user-2
% 11 Near one capacity achieved for user-1
© i
> "
% HH = R;; standard 2PAM NOMA
S i A\ Ry; standard 2PAM NOMA
! L1 T n n
0 0.21 04 05 0.8 1
«

Fig. 7. Achievable data rates of first and second
users for standard 2PAM NOMA.

2 & — ©
A
15 1
Near 1+1
mN Capacity
+ Achieved
o
g o o)
Q)
—
1S
>
w
0.5 1
[©-R1 + Ry; standard 2PAM NOMA|
0 . n n n
0 0.21 04 05 0.8 1
[0

Fig. 8. Achievable sum rate of first and second
users for standard 2PAM NOMA.

The power allocation coefficient to achieve
1+1 capacity region was calculated. Then, it
was shown that with the tolerable loss less than
0.008, near 1+1 capacity region is achieved. We
also calculated numerically the power
allocation coefficient to achieve near 1+1
capacity region.

As a result, for 2PAM NOMA to operate near
1+1 capacity region, proper total power with
could be

calculated in design of NOMA systems in 5G

appropriate  power allocation

mobile networks.
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