DOI QR코드

DOI QR Code

Time Series Patterns and Clustering of Rotifer Community in Relation with Topographical Characteristics in Lentic Ecosystems

정수생태계의 지형적인 요인 변화와 윤충류 출현 종 수 및 개체군 밀도 변동에 대한 연구

  • Oh, Hye-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Heo, Yu-Ji (Department of Environmental Education, Sunchon National University) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University)
  • 오혜지 (경희대학교 환경학및환경공학과) ;
  • 허유지 (순천대학교 환경교육학과) ;
  • 장광현 (경희대학교 환경학및환경공학과) ;
  • 김현우 (순천대학교 환경교육학과)
  • Received : 2021.12.15
  • Accepted : 2021.12.22
  • Published : 2021.12.31

Abstract

The time series data of rotifer community focusing on the species number and total density were collected from 29 reservoirs located at Jeonnam Province from 2008 to 2016 quarterly. The reservoirs had similar weather condition during the study period, but their sizes and water qualities were different. To analyze the temporal dynamics of rotifer community, the medians, ranges, outliers and coefficient of variation (CV) value of rotifer species number and abundance were compared. For the temporal trend analysis, time series of each reservoir data were compared and clustered using the dynamic time warping function of the R package "dtwclust". Small-sized reservoirs showed higher variability in rotifer abundance with more frequent outliers than large-sized reservoirs. On the other hand, apparent pattern was not observed for the rotifer species number. For the temporal pattern of rotifer density, COD, phytoplankton abundance fluctuation, and cladoceran abundance fluctuation have been suggested as potential factor affecting the rotifer abundance dynamics.

본 연구에서는 호소의 환경 특성 및 시간에 따른 동물 플랑크톤 윤충류 군집 변동 특성을 분석하기 위해, 전라남도에 위치하여 유사한 기상 조건을 가지나 규모와 수질 환경이 서로 다른 29개 호소를 선정, 2008년부터 2016년까지 분기별 윤충류 출현 개체수 및 종 수의 시계열 자료를 수집하였다. 조사기간 중 각 호소의 윤충류 출현 개체수 및 종 수의 범위, 이상치 및 변동계수(CV)를 비교하였으며, 동적 시간 워핑(dtw) 분석을 통해 각 호소의 윤충류 군집 시계열 경향을 비교하여 유사 정도를 바탕으로 분류(clustering)하고, 주성분 분석을 통해 분류된 호소의 환경 특성과의 관계를 분석하였다. 윤충류 개체수에서 보다 빈번한 이상치 출현과 높은 변동성을 보인 호소에는 상대적으로 저수용량이 적은 소규모 호소가 많았던 반면, 출현종 수에서는 뚜렷한 경향이 관찰되지 않았다. 타 호소들과 윤충류 개체수의 시간적 변동 경향이 상이하게 나타난 일부 호소들에서 화학적 산소 요구량(COD)과 양의 상관관계를, 식물플랑크톤 현존량 변동 및 지각류 상대풍부도 변동과 음의 상관관계를 갖는 것으로 나타나 윤충류 출현 개체수의 시계열 경향에 영향을 미치는 잠재적인 요인으로 분석되었다.

Keywords

Acknowledgement

본 연구는 영산강유역환경청에서 시행한 "21년 영산강 섬진강 수계 호소환경조사"의 일환으로 수행되었습니다.

References

  1. Conty, A., F. Garciia-Criado and E. Becares. 2007. Changes in bacterial and ciliate densities with trophic status in Mediterranean shallow lakes. Hydrobiologia 584: 327-335. https://doi.org/10.1007/s10750-007-0585-x
  2. Dodson, S.I., A.L. Newman, S.W. Wolf, M.L. Alexander, M.P. Woodford and S.V. Egeren. 2009. The relationship between zooplankton community structure and lake characteristics in temperate lakes (Northern Wisconsin, USA). Journal of Plankton Research 31(1): 93-100. https://doi.org/10.1093/plankt/fbn095
  3. Ejsmont-Karabin, J. 2012. The usefulness of zooplankton as lake ecosystem indicators: rotifer trophic state index. Polish Journal of Ecology 60(2): 339-350.
  4. Gillooly, J.F. 2000. Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research 22(2): 241-251. https://doi.org/10.1093/plankt/22.2.241
  5. Giorgino, T. 2009. Computing and visualizing dynamics time warping alignments in R: the dtw package. Journal of Statistical Software 31(7): 1-24. https://doi.org/10.18637/jss.v031.i07
  6. Hessen, D.O., B.A. Faafeng, V.H. Smith, V. Bakkestuen and B. Walseng. 2006. Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology 87(2): 433-443. https://doi.org/10.1890/05-0352
  7. Kim, M.S., B. Kim and M.S. Jun. 2019. Seasonal succession of zooplankton community in a large reservoir of summer monsoon region (Lake Soyang). Korean Journal of Environment and Ecology 52(1): 40-49. https://doi.org/10.11614/KSL.2019.52.1.040
  8. Koste, W. 1978. Rotatoria. Die Radertiere Mitteleuropes begrunder von Max Voigt, 2nd edn., Vol. 1. Textband, 673p., Vol.2. Tafelband, 234p., Borntraeger, Stuttgart.
  9. Mackas, D.L., W. Greve, M. Edwards, S. Chiba, K. Tadokoro, D. Eloire, M.G. Mazzocchi, S. Batten, A.J. Richardson, C. Johnson, E. Head, A. Conversi and T. Peluso. 2012. Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology. Progress in Oceanography 97-100: 31-62. https://doi.org/10.1016/j.pocean.2011.11.005
  10. May, L. and M. O'Hare. 2005. Changes in rotifer species composition and abundance along a trophic gradient in Loch Lomond, Scotland, UK. Hydrobiologia 546: 397-404. https://doi.org/10.1007/s10750-005-4282-3
  11. Mazaris, A.D., M. Moustaka-Gouni, E. Michaloudi and D.C. Bobori. 2010. Biogeographical patterns of freshwater micro- and macroorganisms: a comparison between phytoplankton, zooplankton and fish in the eastern Mediterranean. Journal of Biogeography 37: 1341-1351. https://doi.org/10.1111/j.1365-2699.2010.02294.x
  12. McCauley, E. and W.W. Murdoch. 1987. Cyclic and stable populations: plankton as paradigm. The American Naturalist 129(1): 97-121. https://doi.org/10.1086/284624
  13. Meerhoff, M., C. Iglesias, F.T. De Mello, J.M. Clemente, E. Jensen, T.L. Lauridsen and E. Jeppesen. 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52(6): 1009-1021. https://doi.org/10.1111/j.1365-2427.2007.01748.x
  14. NIER. 2011. Survey on lake environment in the Yeongsan and Seomjin River Basins. National Institute of Environmental Research, Incheon, Korea.
  15. Oh, H.J., K.H. Chang, H.G. Jeong, S.M. Go, G.H. La and H.W. Kim. 2019a. Zooplankton collection methods for various freshwater ecosystems and their applications. Korean Journal of Environment and Ecology 52(3): 231-244. https://doi.org/10.11614/KSL.2019.52.3.231
  16. Oh, H.J., Y. Oda, J.Y. Ha, T. Nagata, T. Hanazato, Y. Miyabara, M. Sakamoto and K.H. Chang. 2019b. Response of daphnids and other zooplankton populations to massive fish kill in Lake Suwa. Ecological Research 34: 856-863. https://doi.org/10.1111/1440-1703.12054
  17. Oh, H.J., Y.J. Chae, D. Ku, Y.J. Kim, J.H. Wang, B. Choi, C.W. Ji, I.S. Kwak, Y.S. Park, G.K. Nam, Y.J. Kim and K.H. Chang. 2020. A comparative study on the information of zooplankton community based on towing type and depth in the lake ecosystems. Korean Journal of Environment and Ecology 53(4): 365-373. https://doi.org/10.11614/KSL.2020.53.4.365
  18. Oh, H.J., Y.J. Chae, Y. Choi, D. Ku, Y.J. Heo, I.S. Kwak, H. Jo, Y.S. Park, K.H. Chang and H.W. Kim. 2021. Review and suggestions for applying DNA sequencing to zooplankton researches: from taxonomic approaches to biological interaction analysis. Korean Journal of Environment and Ecology 54(3):156-169. https://doi.org/10.11614/KSL.2021.54.3.156
  19. Pinel-Alloul, B., T. Niyonsenga and P. Legendre. 1995. Spatial and environmental components of freshwater zooplankton structure. Ecoscience 2(1): 1-19. https://doi.org/10.1080/11956860.1995.11682263
  20. Sarda-Espinosa, A. 2017. Comparing time-series clustering algorithms in R using the dtwclust package. Vienna: R Development Core Team.
  21. Shurin, J.B., M. Winder, R. Adrian, W. Keller, B. Matthews, A.M. Paterson, M.J. Paterson, B. Pinel-Alloul, J.A. Rusak and N.D. Yan. 2010. Environmental stability and lake zooplankton diversity - contrasting effects of chemical and thermal variability. Ecology Letters 13: 453-463. https://doi.org/10.1111/j.1461-0248.2009.01438.x
  22. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Seasonal changes in optical properties of two contrasting tropical freshwater systems. Archiv fur Hydrobiologie 106(4): 433-471.
  23. Uhm, S.H. and S.J. Hwang. 2006. Grazing relationship between phytoplankton and zooplankton in Lake Paldang ecosystem. Korean Journal of Environment and Ecology 39(3): 390-401.
  24. Yoshida, T., J. Urabe and J.J. Elser. 2003. Assessment of 'topdown' and 'bottom-up' forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecological Research 18: 639-650. https://doi.org/10.1111/j.1440-1703.2003.00596.x