Acknowledgement
The work of G. H. Tang was supported by the national natural science foundation of China (11661014, 11961050, 11661013), the work of T.-K. Lee was supported in part by the Ministry of Science and Technology of Taiwan (MOST 107-2115-M-002-018-MY2).
References
- K. I. Beidar, On functional identities and commuting additive mappings, Comm. Algebra 26 (1998), no. 6, 1819-1850. https://doi.org/10.1080/00927879808826241
- K. I. Beidar, Y. Fong, P. Lee, and T. Wong, On additive maps of prime rings satisfying the Engel condition, Comm. Algebra 25 (1997), no. 12, 3889-3902. https://doi.org/10.1080/00927879708826093
- K. I. Beidar, W. S. Martindale, III, and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, 196, Marcel Dekker, Inc., New York, 1996.
- M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), no. 2, 385-394. https://doi.org/10.1006/jabr.1993.1080
- M. Bresar, Applying the theorem on functional identities, Nova J. Math. Game Theory Algebra 4 (1996), no. 1, 43-54.
- M. Bresar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), no. 3, 361-397. https://doi.org/10.11650/twjm/1500407660
- M. Bresar and B. Hvala, On additive maps of prime rings. II, Publ. Math. Debrecen 54(1999), no. 1-2, 39-54.
- M. Chacron, Commuting involution, Comm. Algebra 44 (2016), no. 9, 3951-3965. https://doi.org/10.1080/00927872.2015.1087546
- M. Chacron, Involution satisfying an Engel condition, Comm. Algebra 44 (2016), no. 12, 5058-5073. https://doi.org/10.1080/00927872.2015.1130145
- M. Chacron and T.-K. Lee, Open questions concerning antiautomorphisms of division rings with quasi-generalized Engel conditions, J. Algebra Appl. 18 (2019), no. 9, 1950167, 11 pp. https://doi.org/10.1142/S0219498819501676
- A. Fosner and N. U. Rehman, Identities with additive mappings in semiprime rings, Bull. Korean Math. Soc. 51 (2014), no. 1, 207-211. https://doi.org/10.4134/BKMS.2014.51.1.207
- M. Fosner, N. U. Rehman, and J. Vukman, An Engel condition with an additive mapping in semiprime rings, Proc. Indian Acad. Sci. Math. Sci. 124 (2014), no. 4, 497-500. https://doi.org/10.1007/s12044-014-0205-4
- M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices. II, Duke Math. J. 27 (1960), 21-31. http://projecteuclid.org/euclid.dmj/1077468913 https://doi.org/10.1215/S0012-7094-60-02702-2
- I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-341. https://doi.org/10.2307/1992920
- H. G. Inceboz, M. T. Ko,san, and T.-K. Lee, m-power commuting maps on semiprime rings, Comm. Algebra 42 (2014), no. 3, 1095-1110. https://doi.org/10.1080/00927872.2012.731623
- N. Jacobson, PI-algebras, Lecture Notes in Mathematics, Vol. 441, Springer-Verlag, Berlin, 1975.
- T.-K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull. 38 (1995), no. 4, 445-449. https://doi.org/10.4153/CMB-1995-065-2
- T.-K. Lee, Anti-automorphisms satisfying an Engel condition, Comm. Algebra 45 (2017), no. 9, 4030-4036. https://doi.org/10.1080/00927872.2016.1255894
- T.-K. Lee, Ad-nilpotent elements of semiprime rings with involution, Canad. Math. Bull. 61 (2018), no. 2, 318-327. https://doi.org/10.4153/CMB-2017-005-3
- T.-K. Lee and T.-C. Lee, Commuting additive mappings in semiprime rings, Bull. Inst. Math. Acad. Sinica 24 (1996), no. 4, 259-268.
- T.-K. Lee, K.-S. Liu, and W.-K. Shiue, n-commuting maps on prime rings, Publ. Math. Debrecen 64 (2004), no. 3-4, 463-472.
- P.-K. Liau and C.-K. Liu, On automorphisms and commutativity in semiprime rings, Canad. Math. Bull. 56 (2013), no. 3, 584-592. https://doi.org/10.4153/CMB-2011-185-5
- C.-K. Liu, An Engel condition with automorphisms for left ideals, J. Algebra Appl. 13 (2014), no. 2, 1350092, 14 pp. https://doi.org/10.1142/S0219498813500928
- C.-K. Liu, Additive n-commuting maps on semiprime rings, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 1, 193-216. https://doi.org/10.1017/s001309151900018x
- W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584. https://doi.org/10.1016/0021-8693(69)90029-5
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686
- L. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973), 219-223. https://doi.org/10.1090/S0002-9904-1973-13162-3